
Federico Bianchi 

Behave Lab, Department of Social and Political Sciences, University of Milan

Book presentation 

Reti sociali. Meccanismi e modelli. Bologna: Il Mulino, 2023.

Quantitative Social Science Seminars, 
Department of Political and Social Sciences, University of Bologna 
24 October 2024



• Updated introduction to statistical and computational modelling 
techniques


• 1990s-2000s: convergence of multiple research groups efforts 
(Indiana/Melbourne and Groningen) + access to computational 
power —> statistical models (p*) for hypothesis testing and 
multivariate analysis


• Exponential Random Graph Models (ERGM; Lusher et al., 2013) 
and Stochastic Actor-Oriented Models (SAOM; Snijders, 2017)

Why this book / 1: 

From descriptive to 
inferential network analysis
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• Focus on metatheoretical issues: translations by 
Fortunata Piselli (1995) with an introductory essay; Enrica 
Amaturo’s preface to the Italian edition of Scott (1997 
[1991]).


• An introduction to SNA techniques by Antonio M. Chiesi 
(1980, 1981, 1999).

Social network analysis 
in Italy



• Social network analysis as a method to formally model causal 
mechanisms of social phenomena


• Two steps:


1. bringing back actors’ behaviour (cognition and culture) to the 
core of the analysis of social relationships —> context-dependent 
framing of relationships and decision-making heuristics


2. integrating agent-based modelling into social network analysis

Why this book / 2: 

Social networks as 
causal mechanism 
models
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• “Network science is the study of network models” (Brandes et al., 
2013, p. 4) —> “network analysis” vs. “network theory”


• Methods and techniques to analyse relational data, i.e. 
information on a certain relationship defined within a pair of entities


• Social network analysis is not necessarily the key to access the 
inherently relational structure of social reality

Premise:  

Networks as models of 
social phenomena
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8 1 0 1 0 0 0 1 0



• Identifying a social mechanism —> describing a regular pattern of actions 
and interactions within a population of social actors (Hedström & Bearman, 
2009)


• Dynamic social interactions: vertices (actors) and edges (interactions) in 
a graph


• Edges: relational “events” (e.g., transferring symbolic or material resources) 
or “states” (e.g., friendship, solidarity, etc.) (Borgatti et al., 2009)

Social networks as 
models of social 
mechanisms
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• Identifying the causal mechanisms of social network evolution


• Patterns of social actors’ inter(actions) bringing about regular 
network structures or compositions (Hedström & Bearman, 2009)


• Motives behind decisions (desires and preferences)


• Context framing (cognition and culture)


• Types of ties (events or states; Borgatti et al., 2009)

Causal mechanisms 
of social network 
evolution



• Inferring the effect of unobserved, dynamic relational processes on the 
evolution of a network from the prevalence or incidence of certain local 
configurations


• Network local configurations as “archeological traces” left by causal 
mechanisms (White, 1970; Lusher et al., 2013)


• The relative effect size of these processes can be estimated by 
computing statistics of empirical network data —> Maximum likelihood 
or method of moments (numerical simulations)

Statistical models of 
social networks
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• A relational process can be linked to a local configuration, of 
which count statistics can be computed


• Observations are not independent


• Each local configuration comes with a stochastic dependency 
assumption: es.,  P(xij) ∩ P(xji) = P(xij |xji) ⋅ P(xji)

Statistical models of 
social networks: 

local configurations and 
stochastic dependency 
assumptions
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• Generating (simulating) a random graph distribution 
centred on the observed statistics


• Identifying a parameter vector


• Computing uncertainty measures (hypothesis testing)

Statistical models of 
social networks: 

hypothesis testing
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• Assessing the relative effect of concurrent processes


• E.g.: reciprocity or transitive closure?
Statistical models of 
social networks: 

multivariate analysis
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Tie-based models (ERGM-family; Lusher et al., 2013):


• the occurrence of a tie is assessed independently on agents’ multinomial 
choice, typical of many decision-making contexts


• are indifferent to the specific tie sequences through which particular 
configurations emerge (Block et al., 2019)

Pr(x → x±ij; θ) =
1

n(n − 1)
⋅

exp∑k θkΔzk(x, x±ij)

1 + exp∑k θkΔzk(x, x±ij)
ERGM 

Exponential Random 
Graph Models
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• Agent-based model: the likelihood of a tie to occurr is assessed as a 
function of a focal node-agent’s neighborhood structure/composition


• Each agent decides whether to change the state of an outgoing dyad 
through a multinomial experiment (McFadden, 1973), by optimising 

an objective function 


• The function parameters can be interpreted as the agents’ relative 
preferences on the prevalence of certain local configurations

P(x → x±ij) =
exp( fi(β; x±ij))

∑n
h=1 exp(β; fi(x(ih±)))

SAOM 

Stochastic Actor-
Oriented Models
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To be mathematically tractable, (most) SAOMs (Snijders, 2017) 
assume agents’: 


• access to information about the whole network (e.g., 
geometrically weighted configurations): unplausible for large 
networks or competitive contexts where information is 
strategically concealed (e.g., Renzini et al., 2023) —> 
idiosyncratic models


• changing one tie at each simulation step: prevents modelling 
coordination and collective action (Leifeld & Cranmer, 2019) 
and cascade dynamics driven by threshold-based 
preferences (Renzini et al., 2023)

1 3

2

4

5

3

4 5

2 1

SAOM 

Stochastic Actor-
Oriented Models



• tie selection as a multinomial choice based on 
preference optimization: unplausible for cognitive 
relations not requiring psychological investment (liking 
vs. disliking, status attribution)


• myopia: prevents modelling a) backward-looking 
rationality and learning processes; b) forward-
looking rationality (strategic behaviour in competitive 
contexts)

P(x → x±ij) =
exp( fi(β; x±ij))

∑n
h=1 exp(β; fi(x(ih±)))

SAOM 

Stochastic Actor-
Oriented Models



• Statistical models of social networks usually provide 
underdetermined evidence of causal mechanisms


• “Network patterns” (Robins, 2015) or “network 
mechanisms” (Stadtfeld & Amati, 2021) underlie different 
possible causal mechanisms

Underdetermination 
of statistical models
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1. Complying to a solidarity 
norm (Lindenberg, 2015)


2. Strategically investing in a 
long-term relationship 
(Coleman, 1991)


3. Controlling one’s reputation 
(Buskens & Raub, 2005)



• Prevalence or incidence of the “archeological traces” of unobserved, 
past relational processes (White, 1970, 2008; Lusher et al., 2013)


• Mathematical tractability: sufficient statistics of local configurations 
+ parameters estimated via robust algorithms (maximum likelihood or 
method of moments)


• “Methodological models” (Skvoretz, 1991; Sørensen, 1998): finding 
internal associations within aggregate-level data

Why? 

Methodological 
models
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• Computational, dynamic models that formalize a 
population of interdependent social actors (i.e., agents) 
with specific properties, interacting according to a set of 
behavioural rules within certain environmental constraints 
(Gilbert & Troitzsch, 2005; Squazzoni, 2012; Hedström & 
Manzo, 2015)


• ABMs are “theoretical models” (Skvoretz, 1991; Hedström 
& Manzo, 2015): models of logical or numerical 
propositions of a theory assumed to explain a phenomenon 

Agent-based model 
as theoretical 
models



• “Structural homology” with causal mechanisms (Manzo, 2014):


• Cognitive or cultural constituents of actors’ decisions


• Social interactions


• Institutional, relational, or spatial constraints


• High flexibility —> wide granularity range of agent modelling 
(Wooldridge & Jennings, 1995)


• Social characteristics: autonomy, interdependence, embeddedness, 
heterogeneity


• Cognitive characteristics: reactivity, proactivity, heuristic-based 
rationality, adaptiveness 

ABM: 

flexibility and 
granularity

Real mechanism 
- Actors 
- Actors’ properties 
- Actors’ (inter)actions 
- Actors’ relationships

Agent-based model 
- Agents 
- Agents’ attributes 
- Agents’ rules of behaviour 
- Agents’ structural constraints



• Tie-based models (e.g., ERGM-family) are indifferent to the specific tie 
sequences through which particular configurations emerge (Block et al., 
2019)


• To be mathematically tractable, (most) SAOMs need assuming agents’: 


• access to information about the whole network (e.g., geometrically 
weighted configurations): unplausible for large networks or 
competitive contexts where information is strategically concealed 
(e.g., Renzini et al., 2023)


• tie selection as a multinomial choice based on preference 
optimization: unplausible for cognitive relations not requiring 
psychological investment (liking vs. disliking, status attribution)


• myopia: prevents modelling a) backward-looking rationality and 
learning processes; b) forward-looking rationality (strategic 
behaviour in competitive contexts)


• changing one tie at each simulation step: prevents modelling 
coordination and collective action (Leifeld & Cranmer, 2019) and 
cascade dynamics driven by threshold-based preferences (Renzini 
et al., 2019)

ABMs can complement 
for statistical models’ 
limits concerning: 

- actors’ behaviour 

- tie types 

- context



• Tie-based models (e.g., ERGM-family) are indifferent to the specific tie 
sequences through which particular configurations emerge (Block et al., 
2019)


• To be mathematically tractable, (most) SAOMs need assuming agents’: 


• access to information about the whole network (e.g., geometrically 
weighted configurations): unplausible for large networks or 
competitive contexts where information is strategically concealed 
(e.g., instrumental ties, as in Renzini et al., 2023)


• tie selection as a multinomial choice based on preference 
optimization: unplausible for cognitive relations not requiring 
psychological investment (liking vs. disliking, status attribution)


• myopia: prevents modelling a) backward-looking rationality and 
learning processes; b) forward-looking rationality (strategic 
behaviour in competitive contexts)
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• Tie-based models (e.g., ERGM-family) are indifferent to the specific 
tie sequences through which particular configurations emerge (Block 
et al., 2019)


• To be mathematically tractable, (most) SAOMs need assuming 
agents’: 


• access to information about the whole network (e.g., 
geometrically weighted configurations): unplausible for large 
networks or competitive contexts where information is 
strategically concealed (e.g., Renzini et al., 2023)


• tie selection as a multinomial choice based on preference 
optimization: unplausible for cognitive relations not requiring 
psychological investment (liking vs. disliking, status attribution)


• myopia: prevents modelling a) backward-looking rationality and 
learning processes; b) forward-looking rationality (strategic 
behaviour in competitive contexts)


• changing one tie at each simulation step: prevents modelling 
coordination(Leifeld & Cranmer, 2019) and cascade dynamics 
driven by threshold-based preferences (Renzini et al., 2023)

ABMs can complement 
for statistical models’ 
limits concerning: 

- actors’ behaviour 

- tie types 

- context



• Renzini, Bianchi, & Squazzoni (2023):


• Explaining advice-seeking network formation as the outcome of request 
overload (threshold-based)


• Limited information, local heuristics, plausible and parsimonious model


• Fitted to classic Lazega’s (2001) network


• Bianchi, Bellotti, & Renzini (wip):


• Explaining low adoption rates of malaria prevemptive practices in tribal villages 
in Meghalaya (India)


• Complex contagion via information ties (threshold-based) * negative influence 

Examples of ABMs 
of social networks



• Generativist method (Epstein, 2006): 
sequential complexification of the 
modelled mechanism along with 
computer simulations until the 
generated outcome fits the empirical 
observations (summary statistics)


• Testing for unobserved (unobservable?) 
mechanism components (e.g., 
thresholds, motives, etc.)


• Simulation-based point estimates of 
parameters and uncertainty measures 
for untractable likelihood functions 
(Hartig et al., 2011;  Carrella, 2021)


• No need to rely on unplausible 
assumptions to obtain a tractable 
likelihood function

Theoretical, yet empirical



• ABM of social networks to estimate unobserved or 
unobservable processes 

• Bringing back context-dependent behaviour and 
cognition (type of ties) to the core of explanations of 
social phenomena


• Experiment (Brashears & Gladstone, 2020)


• Middle-range social science

Conclusions
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