
Social Networks 76 (2024) 150–159

0
n

Contents lists available at ScienceDirect

Social Networks

journal homepage: www.elsevier.com/locate/socnet

Status, cognitive overload, and incomplete information in advice-seeking
networks: An agent-based model
Francesco Renzini ∗, Federico Bianchi, Flaminio Squazzoni
Department of Social and Political Sciences, University of Milan, Via Conservatorio 7, 20125 Milan, Italy

A R T I C L E I N F O

Dataset link: https://github.com/ceco51/Status
-cognitive-overload-and-incomplete-informatio
n-ABM/tree/main/Datasets

Keywords:
Advice-seeking
Network formation
Status
Cognitive overload
Stochastic actor-oriented models
Agent-based modeling

A B S T R A C T

Advice-seeking typically occurs across organizational boundaries through informal connections. By using
Stochastic Actor-Oriented Models (SAOM), previous research has tried to identify the micro-level mechanisms
behind these informal connections. Unfortunately, these models assume perfect network information, require
agents to perform too cognitively demanding decisions, and do not account for threshold-based critical events,
such as simultaneous tie changes. In the context of knowledge-intensive organizations, the shortage of high-
skilled professionals could determine complex network effects given that many less-skilled professionals would
seek advice from a few easily overloaded, selective high-skilled, who are also sensitive to status demotion. To
capture these context-specific organizational features, we have elaborated on SAOM with an agent-based model
that assumes local information, status-based tie selection, and simultaneous re-direction of multiple ties. By
fitting our simulated networks to Lazega’s advice network used in previous research, we reproduced the same
set of macro-level network metrics with a parsimonious model based on more empirically plausible assumptions
than previous research. Our findings show the advantage of exploring multiple generative paths of network
formation with different models.
1. Introduction

Understanding the formation of social networks requires to con-
sider the context-specific micro-level interplay of network dynamics
processes and individual preferences. While there has been progress
in the statistical modeling of network data, we still need models
that adequately reproduce observed networks by considering context-
dependent behavioral assumptions on tie formation (Block et al., 2019;
Stadfeld and Amati, 2021).

In knowledge-intensive organizations, research has shown that
advice-seeking networks are affected by status-based selection of ad-
visors, mostly related to resources such as skills and expertise (Blau,
1955; McGrath et al., 2003; Lazega et al., 2006; Agneessens and Wittek,
2012; Agneessens et al., 2022). While high-skilled professionals tend to
refrain from requesting advice from lower-skilled colleagues to avoid
status loss, lower-skilled professionals are keen to receive any advice,
preferably from high-skilled advisors (Borgatti and Cross, 2003; Blau,
1955, 1964; Lazega et al., 2012; Agneessens et al., 2022).

This can generate highly centralized networks with high-skilled
professionals disproportionately targeted by advice requests (Lazega
et al., 2012, 2011), causing their ‘cognitive overload’, i.e. the failure
to cope with an excessive amount of requests (Cross and Prusak, 2002;

∗ Corresponding author.
E-mail addresses: francesco.renzini@unimi.it (F. Renzini), federico.bianchi1@unimi.it (F. Bianchi), flaminio.squazzoni@unimi.it (F. Squazzoni).

Cross et al., 2016; Lazega et al., 2006; Lazega, 2014). Frustrated advice-
seekers would therefore reconsider their relationships and target new
advisors, thus determining cascading network changes (Granovetter,
1978), with a potentially high amount of ties simultaneously relocated.
Research is still needed to test the effect of such micro-macro feedback
dynamics on the formation of advice networks.

Previous research has proposed the use of Stochastic Actor-Oriented
Models (SAOM; Snijders 2017) to examine the emergence of macro-
level network properties from empirically-estimated micro-level mech-
anisms (Snijders and Steglich, 2015). Unfortunately, SAOMs make it
difficult to examine threshold-based critical events implying simulta-
neous tie changes, as these models do not allow multiple agents to
change their personal relationships at a time (Snijders, 2001). More-
over, there are two key SAOM assumptions that do not reflect certain
context-specific cognitive heuristics typical of knowledge-intensive or-
ganizations. First, most SAOMs usually assume that agents have full
information about other agents’ ties (An et al., 2022; Steglich and
Snijders, 2022). Instead, in knowledge-intensive organizations, it is not
easy for individuals to develop fully accurate perceptions of others’
relationships (e.g., Krackhardt 1990, Casciaro et al. 1999, Casciaro
1998) or such information can be strategically concealed (Burt, 1992).
378-8733/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
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Second, SAOMs imply that agents evaluate any potential advisor by per-
forming complex, time-consuming calculations, which are incompatible
with the heuristic-based decision-making that characterizes empirical
agent behavior (Cross et al., 2001b; Cross and Borgatti, 2004).

Here, we propose an agent-based model (Bianchi and Squazzoni,
2015; Macy and Willer, 2002) of the formation of an advice-seeking
network that considers these critical aspects. We assumed hetero-
geneously skilled professionals selecting their advisors according to
status-based preferences, and able to re-address their ties in case of
cognitive overload of their advisors. As in SAOM, we assumed that
agents decide over the state of their outgoing ties by optimizing a set of
preferences. However, unlike SAOM, we assumed that agents can make
simultaneous, multiple tie changes, have limited information about
others’ ties, and tend to follow parsimonious behavioral heuristics of
advisor selection (Hertwig and Herzog, 2009; Macy and Willer, 2002).
Following Snijders and Steglich (2015), we assessed the fit of our model
against Lazega (2001)’s classic dataset of advice exchange among
lawyers by using a generative approach (Epstein, 2006). We started
rom a baseline model, and added behavioral assumptions gradually
ntil we generated simulated networks that adequately reproduced the
arget data. To this end, we performed an exhaustive grid-search of
heoretically and empirically plausible parameter combinations.

The remainder of the article is structured as follows. In Section 2,
e briefly review how network formation is addressed in SAOMs, with
special focus on their assumptions. In Section 3, we present the model
nd our simulation results. Section 4 summarizes our main findings and
iscusses limitations and conclusions.

. Background: SAOMs as agent-based models

.1. Network formation

In SAOM, networks emerge from agents sequentially modifying
heir own personal relationships (Snijders et al., 2010; Snijders, 2017).
gents follow an objective function that accounts for the change in

he state of each of their outgoing tie variables by comparing the
xpected attractiveness of their own personal networks resulting from
ach possible decision. This function is a linear combination of count
tatistics of different resulting network configurations, representing
icro-generative processes such as reciprocity, transitivity or popu-

arity, weighted by real-valued parameters, representing the relative
agnitude of 𝑖’s preferences over such configurations. The objective

unction for agent 𝑖 is:

𝑖(𝜷, 𝑋) =
∑

𝑘
𝛽𝑘𝑠𝑖𝑘(𝑋), (1)

where 𝑠𝑖𝑘(𝑋) represents the count of 𝑘th network configuration, cal-
culated on the resulting network 𝑋 from 𝑖’s perspective, while the
ssociated preferences are expresses by 𝛽𝑘, typically estimated from
ata through the Method of Moments (MoM) (Snijders, 2001).

Because of their agent-based structure and empirical adherence,
AOM can generate networks with realistic macro properties (e.g. con-
ectivity, clustering, etc.) from combinations of micro-generative pro-
esses encoded in 𝑠𝑖𝑘(𝑋), thus supporting mechanism-based explana-
ions of social networks (Snijders and Steglich, 2015; Stadfeld and
mati, 2021; Steglich and Snijders, 2022).

.2. Assumptions and limitations

In SAOM, any hypothesis about micro-generative processes of net-
ork formation is tested by estimating agent preferences from data,
nd assessing the fit of simulated networks from these parameters
ith empirical networks, under specific metrics. As long as the fit

s not satisfactory, the estimation process is repeated by including
ew configurations 𝑠𝑖𝑘, potentially increasing the complexity of the
enerative mechanism.
151
Snijders and Steglich (2015) applied this model selection proce-
dure to explain macro-level properties of the advice network sampled
by Lazega (2001). Their best-fit objective function included 13 param-
eters, 12 of which were estimated, while 1 was fixed, representing
preferences towards various micro-generative processes. More specif-
ically, agents: (i) had different tendencies to seek and be consulted for
advice depending on their seniority; (ii) could evaluate each other’s
popularity; (iii) reciprocated incoming requests; (iv) considered cyclical
advice-exchange patterns; (v) turned to advisors’ advisors, modeled as a
marginally decreasing function of the number of intermediate edgewise
shared partners (GWESP; Hunter 2007); and (vi) were also driven by
seniority-based homophily.

However, Snijders and Steglich (2015)’s approach depends on cer-
tain behavioral assumptions that – in our opinion – do not adequately
reflect the specificity of knowledge-intensive organizational contexts.
Indeed, whenever evaluating a potential advisor, agents have full in-
formation about the entire state of the network (Steglich and Snijders,
2022; An et al., 2022), i.e. for any number of agents 𝑁 , they are
assumed to know the advice activity of colleagues at distance ≥ 2.
For instance, to reproduce observed features of the in- and out-degree
distributions of Lazega (2001), Snijders and Steglich (2015) assumed
that agents would consider the popularity of potential partners. Seeking
a popular partner 𝑗 is cognitively demanding because 𝑖 is required to
know 𝑗’s ties to other parties ℎ1, ℎ2,… , before any prior contact with
𝑗 or with an intermediary agent 𝑘, which in reality could be unknown.
Here, previous research showed that professionals often misperceive
or conceal advice activity among each other (e.g., Krackhardt 1990,
Casciaro et al. 1999, Casciaro 1998, Burt 1992).

Furthermore, for any adequate empirical specification, SAOMs typ-
ically require agents to evaluate potential partners through several
cognitively demanding calculations, which in turn involve higher-order
network configurations (e.g., GWESP) or increasingly introduce non-
local informational requirements. For instance, to model hierarchy, Sni-
jders and Steglich (2015) further assumed that agents knew whether
potential partners had senior advisors or not. We believe that, in
uncertain and knowledge-intensive contexts, it is more plausible to
assume that agents follow parsimonious behavioral heuristics (Borgatti
and Cross, 2003; Hertwig and Herzog, 2009; Simon, 1956; Carlebach
and Yeoung, 2023), speeding-up information retrieval and consump-
tion (Cross et al., 2001b; Cross and Borgatti, 2004).

Finally, in SAOMs advice networks would emerge from sequen-
tial agents decisions following a continuous time Markov-Chain pro-
cess without the possibility to implement simultaneous or cascad-
ing changes (Snijders, 2001; Snijders et al., 2010). Following Self-
Organized Criticality theory (SOC; Bak et al. 1987), it is probable that
complex organizational settings could spontaneously enter in an over-
capacity or saturation state of marginal stability, called the critical
state, prompting an immediate re-arrangement of the system itself (Tur-
cotte, 1999). Due to the combination of resources-driven selection of
partners, and the typical uneven distribution of resources (Krackhardt,
2003; van der Vegt et al., 2006), high-skilled advisors could be satu-
rated by too many advice requests (Krackhardt, 2003; Lazega et al.,
2006; Cross and Prusak, 2002). This could prompt their advice-seekers
to look for new, surrogate partners (Lazega, 2014), thereby trigger-
ing cascading re-directions of ties which shape the overall network
structure. Neglecting these complex dynamics is a serious limitation
to our understanding of network formation in knowledge-intensive
organizations.

3. An ABM of advice network formation

3.1. Advice-seeking as a social exchange

An advice relationship can be conceived as a social exchange be-
tween seekers and givers (Blau, 1964; Reagans and McEvily, 2003;
Lazega et al., 2006), through which seekers aim to obtain valuable



Social Networks 76 (2024) 150–159F. Renzini et al.

a
i
p
w
l
h

s
o
a
a

3

b
i
s

𝑓

a
a
(
i
d

f
d
a
s
a
F
s
w
f
a
l

p

𝑓

l
r
h

i
a
w
f
a

e
c
o
n

w
u
a
i
t
d
S
(
i

s
m
a
m
t
s
r

c
c
p
c
v
d
v
s
t
i
w

resources such as good-quality information, knowledge or mentor-
ing (Cross et al., 2001a). However, requesting advice generally implies
a cost in terms of a status loss (Blau, 1955; McGrath et al., 2003;
Agneessens and Wittek, 2012), in that it exposes one’s ignorance (Lee,
2002; Borgatti and Cross, 2003), so causing substantial discomfort,
which might even be as costly as harming one’s reputation (McGrath
et al., 2003). Advice relationships occur because the seeker recognizes
the expert authority of the giver to compensate for the time dedicated
to information provision (Lazega et al., 2006).

Professional skills determine resource endowments sought by
advice-seekers (McGrath et al., 2003). In organizational settings, skills
tend to be unevenly distributed (Borgatti and Cross, 2003; Krackhardt,
2003; van der Vegt et al., 2006) with a few high-skilled and a majority
of less-skilled, more needy professionals (Blau, 1955; van der Vegt
et al., 2006).

This led us to assume that agents would possess distinct behavioral
rules to seek for advice depending on their own skills (Blau, 1964;
Thye, 2000). A minority of high-skilled professionals (𝛼, computed as

percentage of 𝑁 , the overall number of agents) would be primar-
ly sensitive to status loss, caused by making requests to less-skilled
rofessionals. They would prefer avoiding requesting advice or, if any,
ould prefer to target other high-skilled agents, thus minimizing status

oss. On the contrary, low-skilled professionals would seek advice from
igh-skilled peers, who have better resources (Cross et al., 2001a).

Similarly to SAOM, we assumed that all agents know about the
kills-level of all other agents (Steglich and Snijders, 2022), as also
bserved in various organizations (Cross and Borgatti, 2004; Mirc
nd Parker, 2020). We modeled the skills-level of agents as a binary
ttribute.

.2. Baseline model: Heterogeneous status preferences

By using SAOM notation, we represent differences in agents’ skills-
ased propensities to make advice requests as differently parameter-
zed objective functions. Accordingly, low-skilled agents (denoted with
uperscript 𝑙) evaluate potential advisors with:
𝑙
𝑖 (𝜷, 𝑋) = 𝛽𝑙0

∑

𝑗≠𝑖
𝑥𝑖𝑗 + 𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡

∑

𝑗≠𝑖
𝑥𝑖𝑗𝑇𝑗 + 𝜖 (2)

where 𝛽𝑙0 represents the tendency of agent 𝑖 to send an advice request to
ny other agent 𝑗 ≠ 𝑖 (∑𝑗≠𝑖 𝑥𝑖𝑗 ; out-degree count). 𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡 represents the
ttractiveness that low-skilled agents feel towards high-skilled partners
∑

𝑗≠𝑖 𝑥𝑖𝑗𝑇𝑗 ; count of requests to high-skilled agents, where 𝑇𝑗 is an
ndicator function returning 1 if 𝑗 is high-skilled, 0 otherwise). 𝜖 is a
isturbance following a Gumbel distribution (Snijders, 2001, 2017).

To consider the reliance of low-skilled agents on high-skilled peers
or valuable information, when exploring the parameter space (for
etail, see Discussions and Appendix A), we assumed 𝛽𝑙0 to be negative
nd 𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡 to be positive, with 𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡 + 𝛽𝑙0 > 0. For negative 𝛽𝑙0, low-
killed agents have no incentive to send advice requests to low-skilled
gents, as this would decrease the outcome of the objective function.
or positive 𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡, with 𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡 + 𝛽𝑙0 > 0, sending a request to high-
killed agents would always increase the objective function. In short,
e focused on combinations of parameters that ordered preferences as

ollows: asking high-skilled agents ≻ doing nothing ≻ asking low-skilled
gents. It is worth noting that because of disturbance 𝜖, ties between
ow-skilled agents may occur purely by chance.

We can express the objective function for high-skilled agents (su-
erscript ℎ) as follows:
ℎ
𝑖 (𝜷, 𝑋) = 𝛽ℎ0

∑

𝑗≠𝑖
𝑥𝑖𝑗 + 𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡

∑

𝑗≠𝑖
𝑥𝑖𝑗𝑇𝑗 + 𝜖. (3)

We required 𝛽ℎ0 to be negative and less than 𝛽𝑙0, so that any tie to
ow-skilled agents significantly reduces the objective function, thereby
eflecting the different sensitivity towards status demotion between
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igh- and low-skilled agents. The incentive to avoid status demotion e
s only partially offset by the attractiveness towards other high-skilled
gents (i.e., here we required 𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡 > 0 but 𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡 + 𝛽ℎ0 < 0). In short,
e focused on combinations of parameters that ordered preferences as

ollows: doing nothing ≻ asking high-skilled agents ≻ asking low-skilled
gents.

Algorithm 1 summarizes this baseline model. Although we did not
xpect any empirically realistic networks in this case, exploring extreme
onditions was instrumental to better understand the consequences
f our assumptions (Epstein, 2006), as well as to further reduce the
umber of realistic parameter combinations to explore (Miller, 1998).
Algorithm 1 Network formation under heterogeneous status prefer-
ences
Require: 𝑁 > 0 (number of agents); 𝛼 (% of high-skilled agents);

𝛽𝑙0, 𝛽
ℎ
0 , 𝛽

𝑙
𝑎𝑡𝑡𝑟𝑎𝑐𝑡, 𝛽

ℎ
𝑎𝑡𝑡𝑟𝑎𝑐𝑡, 𝜖 (preferences and disturbance); 𝑇 (number of

iterations)
𝑡 ← 0
𝐺 = (𝑁, ∅) ⊳ Initialize an empty network, with 𝑁 nodes, agents
Determine who is high-skilled from data (if available) or randomly
while 𝑡 ≤ 𝑇 do

𝑖 ← 𝑅𝑎𝑛𝑑(1, 𝑁) ⊳ Randomly select an agent
if 𝑖 is low-skilled (𝑙) then

Evaluate 𝑓 𝑙
𝑖 (𝜷, 𝑋) for each 𝑗 ≠ 𝑖 and for the do-nothing case

Pick 𝑗 that maximizes 𝑓 𝑙
𝑖 (𝜷, 𝑋), consider to do-nothing

Set 𝑥𝑖𝑗 to 𝑥±𝑖𝑗 , if best option is to add or remove a link
else if 𝑖 is high-skilled (ℎ) then

Evaluate 𝑓ℎ
𝑖 (𝜷, 𝑋) for each 𝑗 ≠ 𝑖 and for the do-nothing case

Pick 𝑗 that maximizes 𝑓ℎ
𝑖 (𝜷, 𝑋), consider to do-nothing

Set 𝑥𝑖𝑗 to 𝑥±𝑖𝑗 , if best option is to add or remove a link
end if
𝑡 ← 𝑡 + 1

end while

3.3. Simulating networks with the baseline model

We performed systematic comparisons between 500 simulated net-
orks from Algorithm 1 and Lazega (2001)’s empirical network by
sing a modified set of the macro network metrics selected by Snijders
nd Steglich (2015). More specifically, we kept 9 out of 10 of the orig-
nal metrics, and also considered three additional ones. We excluded
he least upper boundedness (lubness) because of ambiguities in its
efinitions available in R sna package (Butts, 2023) and Snijders and
teglich (2015). By applying Butts (2023)’s implementation on Lazega
2001)’s network, we obtained a value of 0.11 for its lubness, while
n Snijders and Steglich (2015) the value, on the same network, was 1.

We investigated additional macro properties of simulated networks,
uch as their community structure, by focusing on the number of com-
unities found by the computationally efficient random walks-based

lgorithm (walktrap) of Pons and Latapy (2005). We then calculated the
odularity score induced by the retrieved partitions. We also calculated

he median of the distribution of normalized betweenness centrality
cores, which is related to the concept of ’structural holes’, highly
elevant in organizational settings (Burt, 1992).

We kept metrics representing the connectivity, degree distributions,
lustering, and hierarchy of networks. Concerning connectivity, we
omputed the diameter and G50 (i.e., maximum and median shortest
aths), the number of connected components, and the size of the largest
omponent. Concerning degree distributions, we computed the scaled
ariance (i.e., variance divided by the mean) of both in- and out-degree
istributions, as well as their Pearson correlation coefficient. For scaled
ariance, values larger than 1 indicate skewed distributions. The tran-
itivity index captured clustering (i.e. the number of transitively closed
riplets divided by the number of two-paths), while the Krackhardt
ndex captured network hierarchy, by measuring the extent through
hich directed paths ran in one direction only. These metrics reflect

mergent characteristics that cannot be readily derived from the values
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Table 1
Baseline model satisfying the constraints of Section 3.2.
Parameter Value

Baseline propensity low-skilled (𝛽𝑙0) −1
Baseline propensity high-skilled (𝛽ℎ0 ) −3
Attractiveness towards high-skilled for both types (𝛽𝑎𝑡𝑡𝑟𝑎𝑐𝑡) 2.5

of agent preferences (Snijders and Steglich, 2015). Hence, they should
be considered as the ideal empirical target to assess the fit of our model.

Starting from empty networks, 𝑁 = 71 agents (i.e. the size of Lazega
2001’s network) were iteratively selected for 𝑇 = {3500, 7100, 7500}
ticks, yielding on average 50, 100, and 105 opportunities to change ties,
respectively. Results of the baseline model are shown only for 𝑇 = 7500,
as the other two scenarios did not yield qualitatively different results
(see Supplementary Material, SM, in Appendix B). In a preliminary
exploration of the parameter space (see Appendix A for details), we
found that 𝛼 = 0.20 – i.e. a population with 14 high-skilled and 57
low-skilled agents – generated the most empirically adequate networks.
Therefore, results are presented from this parameter specification.

We examined model realizations with values for 𝛽𝑙0, 𝛽
ℎ
0 , 𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡 and

𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡 satisfying the constraints introduced in Section 3.2. Here, we
show results for 𝛽𝑙0 = −1, 𝛽ℎ0 = −3, 𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡 = 𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡 = 2.5 (see Table 1).

Table Suppl. 2 of the SM (Appendix B) shows a counterfactual case
in which 𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡 + 𝛽ℎ0 > 0, meaning that high-skilled agents had a small
preference to send advice requests to other high-skilled agents.

3.4. Baseline model results

Table 2 shows summary statistics of the macro metrics computed
from the baseline model, compared to values calculated on Lazega
(2001)’s network.

As expected, Algorithm 1 did not generate networks sufficiently
comparable to Lazega (2001), despite similar densities. The median
value of the scaled variance of the in-degree distribution was approxi-
mately 8 times the empirical one. The same statistic on the out-degree
distribution was roughly half of the empirical case. Degree distributions
were almost perfectly anti-correlated (−0.993), while in Lazega (2001)
we observed a small positive correlation.

More specifically, here we had 14 high-skilled agents with an aver-
age in-degree of 57 each (the number of low-skilled agents) and 57
low-skilled agents with very small, randomly generated average in-
degree (Fig. 1). These differences inflated the variance of the in-degree
distribution, and were determined by status preferences: Whenever
possible, low-skilled agents sought advice from high-skilled (𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡 +
𝛽𝑙0 > 0), thus increasing their in-degree. On the contrary, high-skilled
agents tended to avoid sending requests (𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡 + 𝛽ℎ0 < 0), and so did
ot contribute to the in-degree of low-skilled agents.

A similar process explains the scaled variance of the out-degree
istribution. Here, we had 57 low-skilled agents with an average out-
egree of 14 and 14 high-skilled agents with very small, randomly
enerated average out-degree (Fig. 1).

As a result, degree distributions tended to be (almost) perfectly
nti-correlated: agents with the highest in-degree (the high-skilled
nes) tended to have the smallest out-degree (the opposite holds for
ow-skilled).

The transitivity index was very high, reaching almost 1. In the
aseline model, agents were more likely to lay in triadic configurations
uch as in-2-stars than in 2-paths. The few 2-paths tended to turn
nto transitive ties mainly as an artifact of the difference in status
references and randomness.

Simulated networks tended to have the smallest possible G50, a very
mall diameter (2) and were fully connected in a single component.
odularity was generally 0, indicating the absence of distinct com-
unity structures. Indeed, the median number of communities was 1.

inally, the Krackhardt Index and the median normalized betweenness
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centrality revealed a very hierarchical structure, with values around 1
and 0 respectively. Therefore, simulated networks were organized in a
core–periphery way (Borgatti and Everett, 1999).

3.5. Adding cognitive overload

As suggested by Cross and Prusak (2002) and Cross et al. (2016),
when advisors are overloaded by too many requests – as in Table 2 and
Fig. 1 – they cannot keep up with their own regular work (Zagenczyk
and Murrell, 2009), resulting in time bottlenecks that reduce the quality
and timeliness of advice and call for counter-action. To implement
this ‘cognitive overload’ mechanism (Kirsh, 2000; Lazega et al., 2006),
we introduced a homogeneous tolerability threshold (𝜏) constraining
high-skilled agents’ number of possible incoming advice requests from
low-skilled agents.

Inspired by self-organized criticality (Bak et al., 1987; Turcotte,
1999), we assumed that whenever a high-skilled agent receives a
request which would make its in-degree exceed 𝜏 (Granovetter, 1978),
the system entered a critical state. As in earthquakes, where the accu-
mulated stress is instantaneously released (Olami et al., 1992), here we
assumed that some low-skilled advice-seekers released their ties from
the overloaded advisor. More specifically, a randomly selected subset
of its already existing low-skilled seekers instantaneously decided to
re-direct their ties away, starting to seek advice from other low-skilled.
This mechanism follows Lazega et al. (2006), in that when information
’’[...] starts becoming inaccessible or inappropriate (irrelevant, inaccurate,
untimely), members tend to turn to other sources of advice and create new
‘stars’ [...]’’. In our case, these new stars were other low-skilled agents,
thus forming a homophilous social niche (Lazega et al., 2016).

Whenever redirecting, low-skilled seekers weighted two different
mechanisms: exploring vs. exploiting relationships with other low-skilled
agents. Agents explore by choosing to contact advisors of their own ad-
visors, so obtaining resources that neither the seeker nor its advisor has.
Formally, this is represented with the count of transitive triplets among
low-skilled agents. Through exploitation, agents request advice from
an existing advice seeker. Inspired by satisficing principles of bounded
ationality (Simon, 1956), the mechanism assumes an incentive for
gents to turn to surrogate or social-niche solutions (Lazega, 2014;
azega et al., 2016).

This led us to re-write Eq. (2) as follows:

𝑙
𝑖 (𝜷, 𝑋) = 𝛽𝑙0

∑

𝑗≠𝑖
𝑥𝑖𝑗 + 1{𝐼𝑛𝑑𝑒𝑔ℎ < 𝜏}(𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡

∑

𝑗≠𝑖
𝑥𝑖𝑗𝑇𝑗 )+

1 − 1{𝐼𝑛𝑑𝑒𝑔ℎ < 𝜏})(𝛽𝑙𝐸𝐿

∑

𝑗∈𝐿
𝑥𝑖𝑗𝑥𝑗𝑖 + 𝛽𝑙𝐸𝑅

∑

𝑗,𝑘∈𝐿
𝑥𝑖𝑗𝑥𝑗𝑘𝑥𝑖𝑘) + 𝜖 (4)

here 1{𝐼𝑛𝑑𝑒𝑔ℎ < 𝜏} is an indicator function returning 1 if the
n-degree of high-skilled advice-givers of 𝑖 is strictly lower than the
ognitive overload threshold 𝜏, 0 otherwise. If no high-skilled advice
iver is overloaded, the second term is used for evaluation (same as
q. (2)). When a high-skilled advice giver is overloaded, and 𝑖 decides
o redirect, the third term is used to evaluate new advice givers. 𝛽𝑙𝐸𝑅
nd 𝛽𝑙𝐸𝐿 are, respectively, the preferences towards exploratory and
xploitative ties: While exploration would induce agents to expand
heir personal neighborhood, exploitation would instead induce them
o stay within it. To ensure a high likelihood of low-to-low tie formation
hen redirecting, we required both 𝛽𝑙𝐸𝐿 and 𝛽𝑙𝐸𝑅 to be positive, with
𝑙
𝐸𝐿 + 𝛽𝑙𝐸𝑅 + 𝛽𝑙0 > 0.

The full model is represented by Eqs. (3) and (4), and summa-
ized by Algorithm 2. Here, not only do agents behave according to
ifferent parameters, they also perform completely different actions
e.g. high-skilled agents do not redirect and do not follow the mech-
nisms of exploitation and exploration). This allowed us to introduce
ore behavioral heterogeneity compared to SAOM.
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Table 2
Summary statistics of metrics calculated on simulated and on Lazega (2001)’s networks. In bold: Median simulated and empirical values.

Variable Simulated networks Empirical

N Mean Std. Dev. Min Pctl. 25 Pctl. 50 Pctl. 75 Max Values

Density 500 0.169 0.001 0.166 0.168 0.169 0.169 0.172 0.179
Scaled Variance Indegree 500 44.68 0.383 43.75 44.414 44.686 44.933 45.771 5.62
Scaled Variance Outdegree 500 2.551 0.089 2.241 2.489 2.556 2.611 2.775 4.10
Correlation Indegree-Outdegree 500 −0.993 0.001 −0.996 −0.994 −0.993 −0.992 −0.988 0.14
Transitivity 500 0.978 0.006 0.913 0.975 0.978 0.981 0.99 0.44
Diameter 500 2.096 0.295 2 2 2 2 3 3
G50 500 1 0 1 1 1 1 1 2
No. Components 500 1 0 1 1 1 1 1 1
Size of largest component 500 71 0 71 71 71 71 71 71
Modularity 500 0.001 0.002 0 0 0 0 0.008 0.29
No. Communities 500 1.166 0.393 1 1 1 1 3 3
Median BTW centrality 500 0 0 0 0 0 0 0 0.008
Krackhardt H_Index 500 0.996 0.006 0.959 0.996 0.999 1 1 0.16
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Algorithm 2 Network formation from status preferences and cognitive
overload
Require: 𝑁 > 0 (number of agents); 𝛼 (% of high-skilled agents);
𝜏 (cognitive overload threshold); 𝛽𝑙0, 𝛽

ℎ
0 , 𝛽

𝑙
𝑎𝑡𝑡𝑟𝑎𝑐𝑡, 𝛽

ℎ
𝑎𝑡𝑡𝑟𝑎𝑐𝑡, 𝛽

𝑙
𝐸𝐿, 𝛽

𝑙
𝐸𝑅, 𝜖

(preferences and disturbance); 𝑇 (number of iterations)
𝑡 ← 0
𝐺 = (𝑁, ∅) ⊳ Initialize an empty network, with 𝑁 nodes, agents
Determine who is high-skilled from data (if available) or randomly
Assign 𝜏 to high-skilled agents
while 𝑡 ≤ 𝑇 do

𝑖 ← 𝑅𝑎𝑛𝑑(1, 𝑁) ⊳ Randomly select an agent
if 𝑖 is low-skilled (𝑙) then

Evaluate 𝑓 𝑙
𝑖 (𝜷, 𝑋) for each 𝑗 ≠ 𝑖 and for the do-nothing case

Pick 𝑗 that maximizes 𝑓 𝑙
𝑖 (𝜷, 𝑋), consider to do-nothing

if 𝑗 is high-skilled and In-Degree (𝑗) > 𝜏 then
Remove and redirect between 1 and 𝜏 𝑙-agents asking to 𝑗
for Every redirecting low-skilled 𝑙 do

Evaluate low-skilled agents via third term of Eq. (4)
Pick 𝑗 that maximizes 𝑓 𝑙

𝑖 (𝜷, 𝑋), consider to do-nothing
Set 𝑥𝑖𝑗 to 𝑥±𝑖𝑗 , if best option is to add or remove a link

end for
else

Set 𝑥𝑖𝑗 to 𝑥±𝑖𝑗 , if best option is to add or remove a link
end if

else if 𝑖 is high-skilled (ℎ) then
Evaluate 𝑓ℎ

𝑖 (𝜷, 𝑋) for each 𝑗 ≠ 𝑖 and for the do-nothing case
Pick 𝑗 that maximizes 𝑓ℎ

𝑖 (𝜷, 𝑋), consider to do-nothing
Set 𝑥𝑖𝑗 to 𝑥±𝑖𝑗 , if best option is to add or remove a link

end if
𝑡 ← 𝑡 + 1

end while

3.6. Simulating networks

We first ran simulations with extreme parameters (𝜏 = 1; see
ppendix A) to observe outcomes in case high-skilled agents were
inimally available to meet advice requests coming from low-skilled
gents. This case was exactly the opposite of the baseline model, where
gents were maximally available (no 𝜏). For other parameters, we show
esults with 𝛽𝑙0 = −1 and 𝛽ℎ0 = −3 as before, and with 𝛽𝑙𝐸𝐿 = 𝛽𝑙𝐸𝑅 = 1.5
see Table 3). Here, 𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡 = 𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡 = 2.3, because 2.5 generated too
ense networks (median: 0.2952). Nevertheless, results also hold for
.5.

We then explored more fine-grained and plausible combinations of
and 𝜷, and ran Algorithm 2 until we reached the density of Lazega

2001)’s network. Here, we report a selection of the best-fitting models
Results are shown for 𝛽𝑙0 = −0.4, 𝛽ℎ0 = −3, as regards baseline

ropensity. For attractiveness, 𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡 = 𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡 = 2.3. Concerning
xploitation (𝛽𝑙 ) vs. exploration (𝛽𝑙 ), we considered two different
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𝐸𝐿 𝐸𝑅 c
Table 3
Full model with 𝜏 = 1 satisfying constraints on parameters.
Parameter Value

Baseline propensity low-skilled (𝛽𝑙0) −1
Baseline propensity high-skilled (𝛽ℎ0 ) −3
Attractiveness towards high-skilled for both types (𝛽𝑎𝑡𝑡𝑟𝑎𝑐𝑡) 2.3
Preferences towards exploitation (𝛽𝑙𝐸𝐿) 1.5
Preferences towards exploration (𝛽𝑙𝐸𝑅) 1.5

Table 4
Parameters of good-fitting models.

Parameter Value

Both cases
Baseline propensity low-skilled (𝛽𝑙0) −0.4
Baseline propensity high-skilled (𝛽ℎ0 ) −3
Attractiveness towards high-skilled for both types (𝛽𝑎𝑡𝑡𝑟𝑎𝑐𝑡) 2.3

Reported tuple (𝛽𝑙𝐸𝐿, 𝛽𝑙𝐸𝑅) for case 1
(𝛽𝑙𝐸𝐿, 𝛽𝑙𝐸𝑅) (0.5, 0.25)

Reported tuple (𝛽𝑙𝐸𝐿, 𝛽𝑙𝐸𝑅) for case 2
(𝛽𝑙𝐸𝐿, 𝛽𝑙𝐸𝑅) (0.25, 0.5)

cases. In case 1, low-skilled agents preferred to redirect their ties to
other low-skilled agents in their neighborhood (exploitation), rather
than asking to advisors’ advisors (exploration). In case 2, the opposite
was true (see Table 4).

As robustness checks, in the SM (Appendix B) we show results with
different magnitudes for 𝛽𝑙𝐸𝐿 and 𝛽𝑙𝐸𝑅. For the first case, we report 𝛽𝑙𝐸𝐿
equal to {0.4, 0.6}, and keep 𝛽𝑙𝐸𝑅 to 0.25. For case 2, the exact opposite
is reported. Finally, for each parameter combination, we drew 𝜖 from

Gumbel distribution with location 0 and scale 0.3.

.7. Results

.7.1. Minimum cognitive threshold
Table 5 shows that even Algorithm 2 with 𝜏 = 1 did not fit Lazega

2001)’s network. However, here we found empirically plausible values
or scaled in- and out-degree variance. Furthermore, the two distribu-
ions now started to be strongly positively correlated (in some cases,
lmost perfectly).

Although high-skilled agents were still frequently requested by low-
killed peers, they were now too easily overloaded to engage in any
dvice. Because of the redirection mechanism, low-skilled agents cre-
ted new stars (Lazega et al., 2006) by asking advice from other
ow-skilled. Therefore, our 14 high-skilled agents now had low in- and
ut-degree values on average, whereas the 57 low-skilled agents had
igh in- and out-degree values.

Compared to the baseline model (Table 2), we observed a lower but
till very high transitivity. In this case, however, the high values were
aused by the exploration mechanism.
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Fig. 1. Average in- and out-degree of high- and low-skilled agents, generated from parameters of Table 1.
Table 5
Summary statistics of the metrics computed on simulated and Lazega (2001)’s networks. In bold: Median simulated and empirical values.

Variable Simulated networks Empirical

N Mean Std. Dev. Min Pctl. 25 Pctl. 50 Pctl. 75 Max Values

Densities 500 0.197 0.006 0.18 0.193 0.197 0.201 0.22 0.179
Scaled Variance Indegree 500 6.647 2.605 3.157 4.941 6.034 7.365 21.081 5.62
Scaled Variance Outdegree 500 4.049 0.226 3.071 3.895 4.045 4.203 4.63 4.10
Correlation InOut 500 0.738 0.106 0.319 0.682 0.748 0.82 0.933 0.14
Transitivity 500 0.727 0.025 0.649 0.711 0.729 0.743 0.802 0.44
Diameter 500 6.74 1.224 4 6 7 7 12 3
G50 500 2.112 0.352 1 2 2 2 3 2
No Components 500 3.242 1.519 1 2 3 4 9 1
Modularities 500 0.481 0.064 0.144 0.471 0.495 0.517 0.595 0.29
No Communities 500 10.804 3.53 4 8 10 14 19 3
Median BTW centrality 500 0.003 0.001 0.001 0.002 0.003 0.004 0.011 0.008
Krackhardt H_Index 500 0.373 0.169 0.101 0.246 0.292 0.574 0.747 0.16
Emergent advice networks showed a community structure with high
modularity (median: 0.495). Furthermore, because high-skilled agents
now were unwilling to provide advice, networks began to disconnect
(median number of components: 3), with a relatively high number of
communities detected via random-walks (median: 10). G50 was similar
to empirical values, but the diameters were much larger. The median
normalized betweenness centrality and Krackhardt index started to
approach empirical levels.

In summary, in the two extreme cases with no 𝜏 and 𝜏 = 1, we
found opposite results for many metrics. This suggested the existence
of a sweet-spot region for 𝜏 itself in which empirically valid advice
networks could be generated.

3.7.2. Intermediate cognitive threshold value
Following Snijders and Steglich (2015), we considered our model

to adequately fit a metric as long as its empirical value fell within
the central 95% interval of the corresponding implied distribution,
calculated from simulations. For case 1, Fig. 2 shows metrics obtained
by having 𝛽𝑙𝐸𝐿 = 0.5 and 𝛽𝑙𝐸𝑅 = 0.25. Almost all empirical val-
ues were well represented in the implied distributions. Lazega (2001)
values for scaled variances and the correlation between in- and out-
degree distributions, transitivity index and the number of communities
were on the medians of implied distributions or close to. Modularity
was farther from the corresponding simulated median, although still
within the central 90% interval (which is an even more stringent test
of adequacy in Snijders and Steglich 2015). The empirical median
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normalized betweenness centrality was on the third quartile of the
simulated distribution. Unfortunately, the Krackhardt hierarchy index
was excessively high (simulated median: 0.337, empirical value: 0.16).
This would suggest that advice requests in case 1 specification still
tended predominantly towards high-skilled.

Note that some metrics have implied distribution with 0 or neg-
ligible inter-quartile range (IQR). For these metrics, we found that
diameters (median: 3, empirical: 3), G50 (median: 2, empirical: 2),
number of components (median: 1, empirical: 1) and size of largest
component (median: 71, empirical: 71) perfectly fitted Lazega (2001)’s
values.

Fig. 3 shows results for case 2 with 𝛽𝑙𝐸𝑅 = 0.5 and 𝛽𝑙𝐸𝐿 = 0.25.
While the fit for the degree distributions was still perfect, the fit for
transitivity was very poor (median: 0.528, empirical: 0.44). This is due
to 𝛽𝐸𝑅 = 0.5, which is greater than 𝛽𝑙0 in absolute terms. However, the
empirical modularity and the corresponding number of communities
were now perfectly represented by the simulated distributions. This
depended on the different ways to increase local clustering between
cases. While in case 1, low-skilled agents occasionally closed transitive
triplets, the opposite was true here. Note that the Krackhardt Index was
still not well-represented (median: 0.363).

Even in case 2, simulated diameters, G50, number of components,
and size of largest component fitted perfectly the empirical values.

In cases 1 and 2, to a significant extent (see SM), simulated networks
appropriately fitted the connectivity, degree distributions, median of
the normalized betweenness centrality distribution, modularity, and
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Fig. 2. Implied distributions of network metrics calculated from 500 simulations when
(𝛽𝑙𝐸𝐿, 𝛽𝑙𝐸𝑅) = (0.5, 0.25), centered on their medians and scaled by their IQR. Empirical
values (blue dots) are centered and scaled as well. Values within red-dashed lines
(central 95% interval) indicate adequate fit. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Implied distributions of network metrics calculated from 500 simulations when
(𝛽𝑙𝐸𝐿, 𝛽𝑙𝐸𝑅) = (0.25, 0.5), centered on their medians and scaled by their IQR. Empirical
values (blue dots) are centered and scaled. Values within red-dashed lines (central
95% interval) indicate adequate fit. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

number of communities of Lazega (2001). Transitivity was not realistic
in case 2, whereas perfectly fitted in case 1. Therefore, of the 12
network properties calculated on Lazega (2001)’s network, 11 could be
adequately fit by case 1. In both cases, the hierarchy of the empirical
network was not well fitted.

To investigate this, we found that there were no requests from
high-skilled to low-skilled agents in simulated networks. This resulted
in reachability graphs with lower density than in the empirical case,
which affected the calculation of the Krackhardt index. As a feasibility
analysis, under case 1 (Fig. 2), we iteratively and randomly reversed
the direction of low-to-high ties one-at-a-time, and checked after how
many reversals the index was eventually fit. Surprisingly, we found that
4 or 5 reversals were sufficient to adequately reproduce the Krackhardt
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Fig. 4. Implied distributions of network metrics calculated from 500 simulations for
case 1 when 𝛽ℎ0 = −1.1, 𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡 = 0.46, centered on their medians and scaled by their IQR.
Empirical values (blue dots) are centered and scaled as well. Values within red-dashed
lines (central 95% interval) indicate adequate fit. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

index, without reducing the fit of the other metrics. Considering that
there could have been at most 14 × 57 reversals or high-to-low ties with
𝛼 = 0.20, we needed only the 0.5% of this theoretical maximum for
an adequate fit. This motivated us to investigate the parameter space
around the best-fit case 1 in more detail (see Appendix A).

Fig. 4 shows the fit for case 1 when 𝛽ℎ0 = −1.1 instead of −3 and
with 𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡 corresponding to the 20% of 𝛽𝑙𝑎𝑡𝑡𝑟𝑎𝑐𝑡 (i.e., to 0.46). The
empirical value for Krackhardt index finally fell within the mid 95%
of the implied distribution (approximately on the 20th percentile). The
overall fit for the other metrics was unchanged excluding the scaled
variances of the degree distributions, where empirical values were now
closer to the third quartile. Nevertheless, they were still in the IQR, thus
very well represented. Metrics with negligible IQR had still a perfect
fit. In the SM (Appendix B), we reported an illustrative combination of
parameters in which the empirical Krackhardt index was on the median
of the simulated distribution. However, the fit for the scaled-variance
of the out-degree substantially dropped.

Fig. 5 shows results with 𝜏 = 22, with all the other parameters as in
Fig. 4. Certain metrics improved and others were accurately fitted. For
some metrics, the empirical observation was on the mode of the implied
distribution (e.g. for the number of communities or the transitivity).
Metrics with little-to-no IQR were again perfectly fitted. Fig. 6 shows
a perfect reproduction of the number of communities, correlation be-
tween degree distributions, and transitivity, with modularity improved,
and an unchanged fit of scaled variance of degree distributions and
other metrics.

To further validate the best-fitting model specification, we calcu-
lated the distribution of agents across communities using simulated
networks with exactly the same number of communities as in Lazega
(2001)’s network (i.e. 3 communities) for appropriate comparison.
In Lazega (2001)’s network, the 3 communities included 31, 23 and 17
agents, respectively. In our best-fit case, the median number of agents
by community was 31.50 (IQR:27-37), 22 (IQR: 19-27.75), and 16
(IQR:12-20). Furthermore, we qualitatively assessed the distribution of
high-skilled agents by community. Fig. 7 shows that high-skilled agents
belonged to different communities, often unevenly distributed.
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Fig. 5. Implied distributions of network metrics calculated on 500 simulations in case 1 with 𝛽ℎ0 = −1.1, 𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡 = 0.46 and 𝜏 = 22, centered on their medians and scaled by their
IQR. Empirical values (blue dots) are centered and scaled. Values within red-dashed lines (central 95% interval) indicate adequate fit. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Implied distributions of network metrics calculated on 500 simulations in case
1 with 𝜏 = 22, 𝛽ℎ0 = −1.1, 𝛽𝑙𝐸𝑅 = 0.28, 𝛽ℎ𝑎𝑡𝑡𝑟𝑎𝑐𝑡 = 0.35, centered on their medians and
scaled by their IQR. Empirical values (blue dots) are centered and scaled. Values within
red-dashed lines (central 95% interval) indicate adequate fit. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. High-skilled agents (in red) by community (networks from Fig. 6). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

4. Discussion and conclusion

Drawing on Stochastic Actor-Oriented Models (SAOM) (Snijders
et al., 2010; Snijders and Steglich, 2015), we built an agent-based
model that examined the emergence of advice-seeking networks in
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knowledge-intensive organizational contexts. We concentrated on the
concurrent effect of skills-based status concerns, and re-direction of
advice requests in case of high-skilled advisors’ cognitive overload. We
aimed to show that a model other than SAOM could reproduce Lazega
(2001)’s network properties while relying on more empirically plausi-
ble assumptions. More specifically, our agents did not have full network
information, and could not perform demanding and time-consuming
calculations to select advisors. Furthermore, we relaxed the assumption
of perfect sequentiality of individual decisions, thus introducing the
possibility of studying the impact of threshold-based critical events
in network formation that generate multiple cascading tie changes
(e.g., Granovetter 1978).

Our model accurately reproduced 12 macro-level metrics of Lazega
(2001)’s network, 9 of which were considered and fitted in the pioneer-
ing article of Snijders and Steglich (2015). To achieve this, Snijders and
Steglich (2015) assumed a combination of micro-generative processes
representing popularity, reciprocity, higher-order transitivity (GWESP),
cyclical advice exchange, seniority-based attractiveness and homophily,
which required the estimation of 12 parameters, whereas 1 parameter
was fixed (GWESP decay parameter). In our case, by assuming pref-
erences towards advisors reflecting simple status considerations and
heterogeneity of skills, and considering critical re-direction of ties due
to advisors’ cognitive overload, we were able to achieve an adequate
fit by exploring the values of 8 parameters only.

To find the best-fitting parameters, we exhaustively explored certain
parameter combinations that allowed us to incorporate theoretical
and empirical knowledge on the context of knowledge-intensive or-
ganizations (see Sections 3.2 and 3.5; see Appendix A for further
details), while assessing the similarity of the networks generated from
each parameter combination to the network of Lazega (2001) with
respect to the 12 macro-level metrics. The evaluation was based on
whether the empirical values fell within the central 95% interval of
the corresponding simulated distributions.

Note that our exploration strategy varied from the typical Method of
Moments (MoM) of SAOM. Indeed, because of the existence of a binary
skills-attribute and a threshold of cognitive overload for high-skilled
agents not directly observed in Lazega (2001)’s network, we could not
use MoM to estimate these unobserved mechanisms. More specifically,
we did not have any empirical aggregate counts of low-to-high ties or
ties to individuals with a certain threshold to be matched to simulated
counterparts. Nevertheless, we all know that it is important to examine
unobserved mechanisms as they can play an important role in network
formation (An et al., 2022).

This said, our model also has certain limitations. First, professionals’
skills are modeled as fixed binary attributes, so agents cannot learn over
time. In reality, we should expect that some low-skilled agents could
become more knowledgeable because of good advice received from
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high-skilled agents or secondary information received from similar
peers. Possible extensions of our work could follow Prell and Lo’s
(2016) model, where agents’ level of knowledge co-evolved with the
network structure. Secondly, information on skills was public, while
we could also expect reputation and gossip regulating information
exchange (Ellwardt, 2019). Finally, the model was validated only on a
cross-sectional advice network. Extensions to longitudinal data would
help us to better disentangle cyclical dynamics between overload,
learning, and status-based preferences (Lazega et al., 2011).

However, even considering these limitations, we believe that our
study has shown the full potential of ABM to study various micro-
generative mechanisms of network formation in given empirical con-
texts, with an integration of theory and empirical inferences that should
be further explored in network formation research. Indeed, previous
ABMs using a SAOM framework have not fully exploited the possibility
of comparing simulation outcomes with empirical data (see, e.g., Prell
and Lo 2016, Bianchi et al. 2020, Daza and Kreuger 2021), which is
key to connect modelers coming from a ‘generative’ ABM framework
with social network modelers.

In conclusion, our study indicates the importance of exploring
multiple generative paths of advice network formation and dynam-
ics (Squazzoni, 2012) and highlights the key role of ABM in promoting
methodological diversity and synergy, while avoiding ‘‘causal exclu-
sivism’’ (Manzo, 2022). In complex social environments, it is plausible
that the path from micro conditions to macro network patterns is
characterized by ‘‘multiple realizability’’ (Sawyer, 2004), e.g. different
mechanisms leading to similar outcomes. This complexity requires
‘‘many models’’ micro-macro generative explorations (Page, 2018), and
tight integration between behavioral theories and network data.
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Appendix A

In ABMs, there is no optimal algorithm to explore the parame-
ter space, i.e. the set of all possible parameter combinations (Car-
rella, 2021). Rather, the appropriateness of a given exploration strat-
egy should be assessed by considering: (i) the model assumptions;
(ii) the model purpose (Edmonds et al., 2019); and (iii) the feasible
alternatives.

In our case, our model assumptions prevented us from using the
Method of Moments commonly used in SAOM (see Discussions section).
Our goal was to find parameter combinations that would make the
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simulated networks as close as possible to Lazega (2001)’s network.
Inspired by Borgonovo et al. (2022), we decided to follow a constrained,
iterative and exhaustive search strategy, which effectively led us to a
full-factorial design. By using constraints that incorporate theoretical
and empirical knowledge about the context of knowledge-intensive
organizations, we were able to reduce the number of possible parameter
combinations to be tested to a relatively smaller region of the param-
eter space. We then decided to investigate this region exhaustively,
i.e. testing many parameter combinations within a given resolution and
adjusting the resolution as needed. This strategy allowed us to obtain
a complete view of the input–output mapping in the region of interest,
eliminating the need to implement alternative search heuristics.

More specifically, constraints concerned parameters’ types and val-
ues. For types, 𝜏 had to be a positive integer, 𝛼 a scalar between
0.015 and 0.50 (i.e. at least guaranteeing 1 high-skilled agent, and
such that high-skilled agents were a minority), while 𝜷 (baselines, at-
tractiveness, exploitation and exploration) could simply be real-valued
scalars. However, 𝜷 had to satisfy the theoretically and empirically
informed restrictions of Sections 3.2 and 3.5. Algorithm 3 summarizes
our exploration strategy.
Algorithm 3 Exploration strategy for model’s parameter space.
Require: Model 𝑀 ; set of constraints 𝐶; metrics to evaluate output 𝑂;

measure of fit 𝐹
• Satisfy 𝐶 and randomly select a sample of parameters from the
allowed combinations
• Evaluate which parameter (or combination of parameters) has the
greatest impact on the simulated network metrics in terms of 𝐹
• Explore "degenerate", baseline models to set limits on such
influential parameters
while Simulated metrics are not fitted do
• Define a finer-grained search interval of values for each parameter
• Form a grid i.e., a queue consisting of every possible unique
combination of parameters from the previously defined intervals
• Run the model for each element of the grid
• Evaluate the fit for each combination in the grid (compare 𝑂 with
𝐹 )
end while

In our case, as a first step, we identified 𝛼 and 𝜏 to have the greatest
impact on most variation in the metrics. Subsequently, we selected
particular combinations of 𝜷-parameters that satisfied 𝐶, and examined
egenerate, baseline models (no 𝜏, 𝜏 = 1) to determine reasonable
alues for 𝜏. We then performed a preliminary exhaustive search on the
rid formed by 𝛼 in {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35} and coarsely

varying 𝜏 in {10, 15, 20, 25, 30}. We found that for 𝛼 = 0.20 our simulated
networks were consistently more similar to Lazega (2001).

We set 𝛼 = 0.20, and iteratively searched for more fine-
grained intervals by varying 𝜏 and 𝜷. Thus, we first varied 𝜏 in
{10, 12, 15, 17, 18, 19, 20, 22, 23, 25, 30} while simultaneously varying 𝜷-
parameters in finer intervals (e.g. we varied 𝛽𝑙𝐸𝑅 and 𝛽𝑙𝐸𝐿 by 0.05
from 0.10 to 0.70). We identified a sample of best-fits, and found
that, on average, almost all metrics were well reproduced, except for
the Krackhardt Hierarchy Index. We then performed a finer-grained
exhaustive search based on this sample of best-fit parameters (e.g., 𝛽𝑙𝐸𝐿
and 𝛽𝑙𝐸𝐿 were varied in steps of size 0.03). We ultimately achieved
generative sufficiency for each metric, identified the best fit, and col-
lected a sample of interesting, similar combinations, which we used as
a sensitivity analysis.

Under the procedure described in Algorithm 3, different parameter
combinations lead to different probabilities of generating simulated
networks similar to Lazega (2001)’s network with respect to the 12
macro-level metrics. Consequently, the best-fitting parameter combina-
tions can be interpreted as values that maximize the joint probability
of observing the network characteristics of Lazega (2001) within our
simulated distributions. In other words, the best-fitting parameters
are those that minimize the distance between the simulated networks

and Lazega (2001) with respect to the 12 metrics used.
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