R
find the data, we need to move the
data file to the same directory where our Rstudio project is located
(i.e., the working directory)If you don’t remember what working directory you’re in:
getwd()
## [1] "/Users/federico/Desktop/lab"
Let’s inspect the data structure: we could either open the file outside Rstudio or even from within
It’s a .txt file. What do you see?
It’s an adjacency matrix (see slides)
Values are 0 and 1 and are separated by a tab
(\t
)
In order to load it, we need a function to read a table data structure.
read.table
is classic R, while
readr::read_delim
is faster. Let’s load the
readr
package, included in the
tidyverse
.
# library(readr)
library(tidyverse)
Now we can inspect the read_delim
function in the
console, by hitting ?read_delim
?read_delim
What information do we need? * the file name:
collaboration.txt
* the column separator: "\t"
* whether we have column names: no
Where is my data file?
dir()
## [1] "collaboration.txt" "data" "lab_files"
## [4] "lab.html" "lab.nb.html" "lab.Rmd"
## [7] "lab.Rproj" "support.csv"
In order to maximise reproducibility, we need the path to be
available to all possible colleagues. We can use the
here::here
function, which builds a new path regardless of
the original path. Let’s load the here
package.
library(here)
## here() starts at /Users/federico/Desktop/lab
The function here()
finds my working directory and
builds a plausible path towards the specified arguments.
here("data", "collaboration.txt")
## [1] "/Users/federico/Desktop/lab/data/collaboration.txt"
Now we’re ready to load collaboration data as a new object. We can
use read_tsv
, which takes "\t"
as a default
value of the delim
parameter
here("data", "collaboration.txt") %>%
read_tsv(col_names = FALSE)
What kind of object have we stored our data in?
here("data", "collaboration.txt") %>%
read_tsv(col_names = FALSE) %>%
class()
## Rows: 29 Columns: 29
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## dbl (29): X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, ...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## [1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"
It’s a tibble
, the tidyverse
version of a
data.frame
.
Let’s inspect our data
here("data", "collaboration.txt") %>%
read_tsv(col_names = FALSE) %>%
str()
## Rows: 29 Columns: 29
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## dbl (29): X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, ...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## spc_tbl_ [29 × 29] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ X1 : num [1:29] 0 0 0 0 0 0 0 0 0 0 ...
## $ X2 : num [1:29] 0 0 0 1 0 0 1 1 1 1 ...
## $ X3 : num [1:29] 0 0 0 0 0 1 0 1 1 1 ...
## $ X4 : num [1:29] 0 1 0 0 0 0 0 0 1 1 ...
## $ X5 : num [1:29] 0 0 0 0 0 0 0 0 0 0 ...
## $ X6 : num [1:29] 0 0 1 0 0 0 0 0 1 1 ...
## $ X7 : num [1:29] 0 1 0 0 0 0 0 0 0 0 ...
## $ X8 : num [1:29] 0 1 1 0 0 0 0 0 0 1 ...
## $ X9 : num [1:29] 0 1 1 1 0 1 0 0 0 0 ...
## $ X10: num [1:29] 0 1 1 1 0 1 0 1 0 0 ...
## $ X11: num [1:29] 0 0 0 0 0 0 0 0 0 0 ...
## $ X12: num [1:29] 1 0 0 0 0 0 0 0 0 0 ...
## $ X13: num [1:29] 0 1 0 0 0 1 0 0 0 1 ...
## $ X14: num [1:29] 0 1 1 1 0 0 0 0 1 0 ...
## $ X15: num [1:29] 0 1 0 0 0 1 0 0 0 1 ...
## $ X16: num [1:29] 0 1 0 0 0 1 0 0 0 1 ...
## $ X17: num [1:29] 0 0 0 0 0 1 0 0 0 0 ...
## $ X18: num [1:29] 0 0 0 0 0 0 0 0 0 0 ...
## $ X19: num [1:29] 0 0 1 0 0 1 0 1 1 1 ...
## $ X20: num [1:29] 0 0 1 0 0 1 0 0 1 1 ...
## $ X21: num [1:29] 0 0 0 0 0 0 1 1 0 1 ...
## $ X22: num [1:29] 0 0 0 0 0 0 0 0 0 0 ...
## $ X23: num [1:29] 0 0 1 0 0 1 0 0 1 1 ...
## $ X24: num [1:29] 0 0 0 0 0 0 0 0 0 0 ...
## $ X25: num [1:29] 0 0 1 0 0 0 0 0 0 0 ...
## $ X26: num [1:29] 0 0 1 0 0 0 0 0 0 1 ...
## $ X27: num [1:29] 0 0 1 0 0 0 0 1 0 1 ...
## $ X28: num [1:29] 0 0 1 0 0 0 0 1 0 1 ...
## $ X29: num [1:29] 0 0 0 0 0 0 0 0 0 0 ...
## - attr(*, "spec")=
## .. cols(
## .. X1 = col_double(),
## .. X2 = col_double(),
## .. X3 = col_double(),
## .. X4 = col_double(),
## .. X5 = col_double(),
## .. X6 = col_double(),
## .. X7 = col_double(),
## .. X8 = col_double(),
## .. X9 = col_double(),
## .. X10 = col_double(),
## .. X11 = col_double(),
## .. X12 = col_double(),
## .. X13 = col_double(),
## .. X14 = col_double(),
## .. X15 = col_double(),
## .. X16 = col_double(),
## .. X17 = col_double(),
## .. X18 = col_double(),
## .. X19 = col_double(),
## .. X20 = col_double(),
## .. X21 = col_double(),
## .. X22 = col_double(),
## .. X23 = col_double(),
## .. X24 = col_double(),
## .. X25 = col_double(),
## .. X26 = col_double(),
## .. X27 = col_double(),
## .. X28 = col_double(),
## .. X29 = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
here("data", "collaboration.txt") %>%
read_tsv(col_names = FALSE) %>%
as.matrix()
## Rows: 29 Columns: 29
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## dbl (29): X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, ...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
## [1,] 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## [2,] 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0
## [3,] 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1
## [4,] 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
## [5,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [6,] 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1
## [7,] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [8,] 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
## [9,] 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1
## [10,] 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 1
## [11,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12,] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13,] 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1
## [14,] 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## [15,] 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1
## [16,] 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1
## [17,] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## [18,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19,] 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1
## [20,] 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 0
## [21,] 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
## [22,] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0
## [23,] 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1
## [24,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## [25,] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
## [26,] 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
## [27,] 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1
## [28,] 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
## [29,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## X21 X22 X23 X24 X25 X26 X27 X28 X29
## [1,] 0 0 0 0 0 0 0 0 0
## [2,] 0 0 0 0 0 0 0 0 0
## [3,] 0 0 1 0 1 1 1 1 0
## [4,] 0 0 0 0 0 0 0 0 0
## [5,] 0 0 0 0 0 0 0 0 0
## [6,] 0 0 1 0 0 0 0 0 0
## [7,] 1 0 0 0 0 0 0 0 0
## [8,] 1 0 0 0 0 0 1 1 0
## [9,] 0 0 1 0 0 0 0 0 0
## [10,] 1 0 1 0 0 1 1 1 0
## [11,] 0 0 0 0 0 0 0 0 0
## [12,] 0 0 0 0 0 0 0 0 0
## [13,] 0 1 1 0 0 0 0 0 0
## [14,] 0 0 0 0 0 0 0 0 0
## [15,] 0 1 1 0 0 0 0 0 0
## [16,] 0 1 0 0 0 0 0 0 0
## [17,] 0 0 1 0 0 0 0 0 0
## [18,] 0 0 0 0 1 0 0 0 0
## [19,] 0 0 1 1 1 1 1 1 0
## [20,] 0 0 1 0 0 0 1 0 0
## [21,] 0 0 0 0 0 0 0 0 0
## [22,] 0 0 0 0 0 0 0 0 0
## [23,] 0 0 0 0 0 0 1 0 0
## [24,] 0 0 0 0 0 1 0 0 0
## [25,] 0 0 0 0 0 1 1 0 0
## [26,] 0 0 0 1 1 0 1 0 0
## [27,] 0 0 1 0 1 1 0 0 0
## [28,] 0 0 0 0 0 0 0 0 0
## [29,] 0 0 0 0 0 0 0 0 0
Now our data are interpreted by R
as a matrix.
(collab_data <-
here("data", "collaboration.txt") %>%
read_tsv(col_names = FALSE) %>%
as.matrix())
## Rows: 29 Columns: 29
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## dbl (29): X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, ...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
## [1,] 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## [2,] 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0
## [3,] 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1
## [4,] 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
## [5,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [6,] 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1
## [7,] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [8,] 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
## [9,] 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1
## [10,] 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 1
## [11,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12,] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13,] 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1
## [14,] 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## [15,] 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1
## [16,] 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1
## [17,] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## [18,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19,] 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1
## [20,] 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 0
## [21,] 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
## [22,] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0
## [23,] 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1
## [24,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## [25,] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
## [26,] 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
## [27,] 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1
## [28,] 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
## [29,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## X21 X22 X23 X24 X25 X26 X27 X28 X29
## [1,] 0 0 0 0 0 0 0 0 0
## [2,] 0 0 0 0 0 0 0 0 0
## [3,] 0 0 1 0 1 1 1 1 0
## [4,] 0 0 0 0 0 0 0 0 0
## [5,] 0 0 0 0 0 0 0 0 0
## [6,] 0 0 1 0 0 0 0 0 0
## [7,] 1 0 0 0 0 0 0 0 0
## [8,] 1 0 0 0 0 0 1 1 0
## [9,] 0 0 1 0 0 0 0 0 0
## [10,] 1 0 1 0 0 1 1 1 0
## [11,] 0 0 0 0 0 0 0 0 0
## [12,] 0 0 0 0 0 0 0 0 0
## [13,] 0 1 1 0 0 0 0 0 0
## [14,] 0 0 0 0 0 0 0 0 0
## [15,] 0 1 1 0 0 0 0 0 0
## [16,] 0 1 0 0 0 0 0 0 0
## [17,] 0 0 1 0 0 0 0 0 0
## [18,] 0 0 0 0 1 0 0 0 0
## [19,] 0 0 1 1 1 1 1 1 0
## [20,] 0 0 1 0 0 0 1 0 0
## [21,] 0 0 0 0 0 0 0 0 0
## [22,] 0 0 0 0 0 0 0 0 0
## [23,] 0 0 0 0 0 0 1 0 0
## [24,] 0 0 0 0 0 1 0 0 0
## [25,] 0 0 0 0 0 1 1 0 0
## [26,] 0 0 0 1 1 0 1 0 0
## [27,] 0 0 1 0 1 1 0 0 0
## [28,] 0 0 0 0 0 0 0 0 0
## [29,] 0 0 0 0 0 0 0 0 0
In order to apply some SNA functions, we need to use the
igraph
package, which handles our data as
igraph
objects, to which its functions can be applied
library(igraph)
##
## Caricamento pacchetto: 'igraph'
## I seguenti oggetti sono mascherati da 'package:lubridate':
##
## %--%, union
## I seguenti oggetti sono mascherati da 'package:dplyr':
##
## as_data_frame, groups, union
## I seguenti oggetti sono mascherati da 'package:purrr':
##
## compose, simplify
## Il seguente oggetto è mascherato da 'package:tidyr':
##
## crossing
## Il seguente oggetto è mascherato da 'package:tibble':
##
## as_data_frame
## I seguenti oggetti sono mascherati da 'package:stats':
##
## decompose, spectrum
## Il seguente oggetto è mascherato da 'package:base':
##
## union
igraph
object.graph_from
that can be useful for us(collab_net <- graph_from_adjacency_matrix(collab_data, mode = "undirected"))
## Warning: The `adjmatrix` argument of `graph_from_adjacency_matrix()` must be symmetric
## with mode = "undirected" as of igraph 1.6.0.
## ℹ Use mode = "max" to achieve the original behavior.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## IGRAPH c98a2b1 UN-- 29 82 --
## + attr: name (v/c)
## + edges from c98a2b1 (vertex names):
## [1] X1 --X12 X2 --X4 X2 --X7 X2 --X8 X2 --X9 X2 --X10 X2 --X13 X2 --X14
## [9] X2 --X15 X2 --X16 X3 --X6 X3 --X8 X3 --X9 X3 --X10 X3 --X14 X3 --X19
## [17] X3 --X20 X3 --X23 X3 --X25 X3 --X26 X3 --X27 X3 --X28 X4 --X9 X4 --X10
## [25] X4 --X14 X6 --X9 X6 --X10 X6 --X13 X6 --X15 X6 --X16 X6 --X17 X6 --X19
## [33] X6 --X20 X6 --X23 X7 --X21 X8 --X10 X8 --X19 X8 --X21 X8 --X27 X8 --X28
## [41] X9 --X14 X9 --X19 X9 --X20 X9 --X23 X10--X13 X10--X15 X10--X16 X10--X19
## [49] X10--X20 X10--X21 X10--X23 X10--X26 X10--X27 X10--X28 X13--X15 X13--X16
## [57] X13--X20 X13--X22 X13--X23 X15--X16 X15--X20 X15--X22 X15--X23 X16--X20
## + ... omitted several edges
The summary shows us:
An igraph
object is a complex R object made of lists
str(collab_net)
## Class 'igraph' hidden list of 10
## $ : num 29
## $ : logi FALSE
## $ : num [1:82] 11 3 6 7 8 9 12 13 14 15 ...
## $ : num [1:82] 0 1 1 1 1 1 1 1 1 1 ...
## $ : NULL
## $ : NULL
## $ : NULL
## $ : NULL
## $ :List of 4
## ..$ : num [1:3] 1 0 1
## ..$ : Named list()
## ..$ :List of 1
## .. ..$ name: chr [1:29] "X1" "X2" "X3" "X4" ...
## ..$ : Named list()
## $ :<environment: 0x1347e2888>
Network data can be managed more efficiently with the
tidygraph
package, which allows us to apply the
tidyverse
logic on igraph
objects
library(tidygraph)
##
## Caricamento pacchetto: 'tidygraph'
## Il seguente oggetto è mascherato da 'package:igraph':
##
## groups
## Il seguente oggetto è mascherato da 'package:stats':
##
## filter
We can make a tbl_graph
object, structude into two
tables: one for node attributes and one for the edge list.
as_tbl_graph(collab_net)
## # A tbl_graph: 29 nodes and 82 edges
## #
## # An undirected simple graph with 5 components
## #
## # Node Data: 29 × 1 (active)
## name
## <chr>
## 1 X1
## 2 X2
## 3 X3
## 4 X4
## 5 X5
## 6 X6
## 7 X7
## 8 X8
## 9 X9
## 10 X10
## # ℹ 19 more rows
## #
## # Edge Data: 82 × 2
## from to
## <int> <int>
## 1 1 12
## 2 2 4
## 3 2 7
## # ℹ 79 more rows
Let’s use the table of node attributes to change the node names
(collab_net <-
collab_net %>%
as_tbl_graph() %>%
activate(nodes) %>%
mutate(name = as.character(1:vcount(collab_net))))
## # A tbl_graph: 29 nodes and 82 edges
## #
## # An undirected simple graph with 5 components
## #
## # Node Data: 29 × 1 (active)
## name
## <chr>
## 1 1
## 2 2
## 3 3
## 4 4
## 5 5
## 6 6
## 7 7
## 8 8
## 9 9
## 10 10
## # ℹ 19 more rows
## #
## # Edge Data: 82 × 2
## from to
## <int> <int>
## 1 1 12
## 2 2 4
## 3 2 7
## # ℹ 79 more rows
Let’s inspect subsets of our network using the edge list
collab_net %>%
activate(edges) %>%
filter(to != 10 & from != 10)
## # A tbl_graph: 29 nodes and 67 edges
## #
## # An undirected simple graph with 6 components
## #
## # Edge Data: 67 × 2 (active)
## from to
## <int> <int>
## 1 1 12
## 2 2 4
## 3 2 7
## 4 2 8
## 5 2 9
## 6 2 13
## 7 2 14
## 8 2 15
## 9 2 16
## 10 3 6
## # ℹ 57 more rows
## #
## # Node Data: 29 × 1
## name
## <chr>
## 1 1
## 2 2
## 3 3
## # ℹ 26 more rows
We can use base R
visualization but it’s not very
efficient
plot(collab_net)
More efficient and elegant visualization can be made with the
ggraph
package, which allows us to use ggplot2
on igraph
objects
library(ggraph)
Here’s a fist attempt with Fruchterman-Rheingold layout
collab_plot <- collab_net %>%
ggraph(layout = "fr") +
geom_edge_link(
colour = "grey30",
width = .5,
alpha = .5
) +
geom_node_point(
size = 2,
color = "red"
) +
geom_node_text(aes(label = name))
A basic graph-level network property we could be interested in is how connected a network is
Let’s start from the number of edges
ecount(collab_net)
## [1] 82
We can also retrieve the whole list of edges
E(collab_net)
## + 82/82 edges from c98a2b1 (vertex names):
## [1] 1 --12 2 --4 2 --7 2 --8 2 --9 2 --10 2 --13 2 --14 2 --15 2 --16
## [11] 3 --6 3 --8 3 --9 3 --10 3 --14 3 --19 3 --20 3 --23 3 --25 3 --26
## [21] 3 --27 3 --28 4 --9 4 --10 4 --14 6 --9 6 --10 6 --13 6 --15 6 --16
## [31] 6 --17 6 --19 6 --20 6 --23 7 --21 8 --10 8 --19 8 --21 8 --27 8 --28
## [41] 9 --14 9 --19 9 --20 9 --23 10--13 10--15 10--16 10--19 10--20 10--21
## [51] 10--23 10--26 10--27 10--28 13--15 13--16 13--20 13--22 13--23 15--16
## [61] 15--20 15--22 15--23 16--20 16--22 17--20 17--23 18--25 19--20 19--23
## [71] 19--24 19--25 19--26 19--27 19--28 20--23 20--27 23--27 24--26 25--26
## [81] 25--27 26--27
The number of edges depends on the number of vertices
vcount(collab_net)
## [1] 29
We can also retrieve the list of vertices
V(collab_net)
## + 29/29 vertices, named, from c98a2b1:
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29
(max_links <- vcount(collab_net) * (vcount(collab_net) - 1) / 2)
## [1] 406
Now, we can calculate density as the ratio between the number of actual links and the number of possible links.
(density <- ecount(collab_net) / max_links)
## [1] 0.2019704
Actually, we don’t need to perform this calculation every time. There
is a specific function in igraph
edge_density(collab_net)
## [1] 0.2019704
(sup_dat <-
here("data", "support.csv") %>%
read_delim(delim = " ", col_names = FALSE) %>%
as.matrix())
## Rows: 99 Columns: 2
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: " "
## chr (2): X1, X2
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## X1 X2
## [1,] "V1" "V29"
## [2,] "V2" "V4"
## [3,] "V2" "V14"
## [4,] "V2" "V15"
## [5,] "V2" "V28"
## [6,] "V3" "V10"
## [7,] "V3" "V13"
## [8,] "V3" "V15"
## [9,] "V3" "V16"
## [10,] "V3" "V25"
## [11,] "V3" "V26"
## [12,] "V3" "V27"
## [13,] "V4" "V2"
## [14,] "V5" "V24"
## [15,] "V6" "V12"
## [16,] "V6" "V13"
## [17,] "V6" "V15"
## [18,] "V6" "V16"
## [19,] "V6" "V17"
## [20,] "V6" "V20"
## [21,] "V6" "V23"
## [22,] "V7" "V1"
## [23,] "V7" "V12"
## [24,] "V8" "V2"
## [25,] "V8" "V4"
## [26,] "V8" "V10"
## [27,] "V8" "V13"
## [28,] "V8" "V15"
## [29,] "V8" "V25"
## [30,] "V8" "V27"
## [31,] "V8" "V28"
## [32,] "V9" "V2"
## [33,] "V9" "V14"
## [34,] "V10" "V3"
## [35,] "V10" "V13"
## [36,] "V10" "V15"
## [37,] "V10" "V19"
## [38,] "V10" "V27"
## [39,] "V12" "V1"
## [40,] "V12" "V2"
## [41,] "V12" "V10"
## [42,] "V12" "V20"
## [43,] "V13" "V16"
## [44,] "V14" "V2"
## [45,] "V14" "V8"
## [46,] "V14" "V9"
## [47,] "V14" "V25"
## [48,] "V15" "V6"
## [49,] "V15" "V10"
## [50,] "V15" "V13"
## [51,] "V15" "V16"
## [52,] "V15" "V22"
## [53,] "V16" "V13"
## [54,] "V16" "V15"
## [55,] "V16" "V22"
## [56,] "V17" "V6"
## [57,] "V17" "V20"
## [58,] "V18" "V25"
## [59,] "V19" "V3"
## [60,] "V19" "V25"
## [61,] "V19" "V27"
## [62,] "V20" "V6"
## [63,] "V20" "V12"
## [64,] "V20" "V17"
## [65,] "V20" "V19"
## [66,] "V20" "V23"
## [67,] "V21" "V6"
## [68,] "V21" "V7"
## [69,] "V21" "V10"
## [70,] "V21" "V29"
## [71,] "V22" "V10"
## [72,] "V22" "V12"
## [73,] "V22" "V13"
## [74,] "V22" "V15"
## [75,] "V22" "V16"
## [76,] "V23" "V6"
## [77,] "V23" "V17"
## [78,] "V23" "V20"
## [79,] "V24" "V5"
## [80,] "V24" "V12"
## [81,] "V25" "V1"
## [82,] "V25" "V19"
## [83,] "V25" "V27"
## [84,] "V26" "V3"
## [85,] "V26" "V10"
## [86,] "V26" "V19"
## [87,] "V26" "V24"
## [88,] "V26" "V25"
## [89,] "V26" "V27"
## [90,] "V27" "V19"
## [91,] "V27" "V25"
## [92,] "V28" "V2"
## [93,] "V28" "V4"
## [94,] "V28" "V8"
## [95,] "V29" "V1"
## [96,] "V29" "V4"
## [97,] "V29" "V9"
## [98,] "V29" "V20"
## [99,] "V29" "V21"
(support <- graph_from_edgelist(sup_dat))
## IGRAPH 21f724c DN-- 28 99 --
## + attr: name (v/c)
## + edges from 21f724c (vertex names):
## [1] V1 ->V29 V2 ->V4 V2 ->V14 V2 ->V15 V2 ->V28 V3 ->V10 V3 ->V13 V3 ->V15
## [9] V3 ->V16 V3 ->V25 V3 ->V26 V3 ->V27 V4 ->V2 V5 ->V24 V6 ->V12 V6 ->V13
## [17] V6 ->V15 V6 ->V16 V6 ->V17 V6 ->V20 V6 ->V23 V7 ->V1 V7 ->V12 V8 ->V2
## [25] V8 ->V4 V8 ->V10 V8 ->V13 V8 ->V15 V8 ->V25 V8 ->V27 V8 ->V28 V9 ->V2
## [33] V9 ->V14 V10->V3 V10->V13 V10->V15 V10->V19 V10->V27 V12->V1 V12->V2
## [41] V12->V10 V12->V20 V13->V16 V14->V2 V14->V8 V14->V9 V14->V25 V15->V6
## [49] V15->V10 V15->V13 V15->V16 V15->V22 V16->V13 V16->V15 V16->V22 V17->V6
## [57] V17->V20 V18->V25 V19->V3 V19->V25 V19->V27 V20->V6 V20->V12 V20->V17
## + ... omitted several edges
sup_edges <- sup_dat
sup_nodes <- paste0("V", 1:29)
Now we have a vector of nodes (node list) and a matrix
of edges (edge list). We can then generate a graph object in a safer way
through graph_from_data_frame
, which takes a node list
(vector) and and edge list (matrix) as inputs.
(sup_net <- graph_from_data_frame(d = sup_edges, vertices = sup_nodes))
## IGRAPH 9af0edf DN-- 29 99 --
## + attr: name (v/c)
## + edges from 9af0edf (vertex names):
## [1] V1 ->V29 V2 ->V4 V2 ->V14 V2 ->V15 V2 ->V28 V3 ->V10 V3 ->V13 V3 ->V15
## [9] V3 ->V16 V3 ->V25 V3 ->V26 V3 ->V27 V4 ->V2 V5 ->V24 V6 ->V12 V6 ->V13
## [17] V6 ->V15 V6 ->V16 V6 ->V17 V6 ->V20 V6 ->V23 V7 ->V1 V7 ->V12 V8 ->V2
## [25] V8 ->V4 V8 ->V10 V8 ->V13 V8 ->V15 V8 ->V25 V8 ->V27 V8 ->V28 V9 ->V2
## [33] V9 ->V14 V10->V3 V10->V13 V10->V15 V10->V19 V10->V27 V12->V1 V12->V2
## [41] V12->V10 V12->V20 V13->V16 V14->V2 V14->V8 V14->V9 V14->V25 V15->V6
## [49] V15->V10 V15->V13 V15->V16 V15->V22 V16->V13 V16->V15 V16->V22 V17->V6
## [57] V17->V20 V18->V25 V19->V3 V19->V25 V19->V27 V20->V6 V20->V12 V20->V17
## + ... omitted several edges
Calculating density:
edge_density(sup_net)
## [1] 0.1219212
Degree of a graph vertex is its number of edges (= size of its personal network)
Let’s look at the degree in collaboration of our nodes
igraph::degree(collab_net)
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## 1 9 12 4 0 10 2 7 8 15 0 1 8 4 8 7 3 1 12 11 3 3 10 2 5 6
## 27 28 29
## 8 4 0
mean(igraph::degree(collab_net))
## [1] 5.655172
sd(igraph::degree(collab_net))
## [1] 4.177113
sort(igraph::degree(collab_net), decreasing = TRUE)
## 10 3 19 20 6 23 2 9 13 15 27 8 16 26 25 4 14 28 17 21 22 7 24 1 12 18
## 15 12 12 11 10 10 9 8 8 8 8 7 7 6 5 4 4 4 3 3 3 2 2 1 1 1
## 5 11 29
## 0 0 0
If we are interested in the relative degree:
degree_distribution(collab_net)
## [1] 0.10344828 0.10344828 0.06896552 0.10344828 0.10344828 0.03448276
## [7] 0.03448276 0.06896552 0.13793103 0.03448276 0.06896552 0.03448276
## [13] 0.06896552 0.00000000 0.00000000 0.03448276
It’s easier to visualize it by using basic R
plotting
functions
collab_net %>%
igraph::degree() %>%
hist(
col = "firebrick",
xlab = "Degree",
ylab = "Frequency",
main = "Professional collaboration",
breaks = 0:max(.)
)
## In- and out-degree (directed)
If the network is directed: * in-degree (popularity): number of arcs directed to a vertex * out-degree (activity): number of arcs directed away from a vertex
Let’s look at the support network
sup_net %>%
igraph::degree(mode = "in") %>%
hist(
col = "red",
xlab = "In-degree",
ylab = "Frequency",
main = "Support",
breaks = 0:max(.)
)
Out-degree
sup_net %>%
igraph::degree(mode = "out") %>%
hist(
col = "red",
xlab = "In-degree",
ylab = "Frequency",
main = "Support",
breaks = 0:max(.)
)
Example data
(net1 <- read_rds(here("data", "cent_example_1.rds")))
## This graph was created by an old(er) igraph version.
## ℹ Call `igraph::upgrade_graph()` on it to use with the current igraph version.
## For now we convert it on the fly...
## IGRAPH e0b5591 U--- 11 17 --
## + attr: cent (v/n)
## + edges from e0b5591:
## [1] 1--11 2-- 4 3-- 5 3--11 4-- 8 5-- 9 5--11 6-- 7 6-- 8 6--10 6--11 7-- 9
## [13] 7--10 7--11 8-- 9 8--10 9--10
If we plot the network by visualizing degree centrality, who is the most central node?
V(net1)$names <- 1:vcount(net1)
my_plot <-
net1 %>%
ggraph(layout = "auto") +
geom_edge_link(
color = "grey",
width = .5
) +
geom_node_text(aes(label = V(net1)$names))
## Using "stress" as default layout
my_plot +
geom_node_point(
size = igraph::degree(net1),
color = "red",
alpha = .3
)
Who would you choose for a policy intervention to let something diffuse more rapidly?
We need to calculate eigenvector centrality (see slides)
eigen_centrality(net1)
## $vector
## [1] 0.2259630 0.0645825 0.3786244 0.2415182 0.5709057 0.9846544 1.0000000
## [8] 0.8386195 0.9113529 0.9986474 0.8450304
##
## $value
## [1] 3.739685
##
## $options
## $options$bmat
## [1] "I"
##
## $options$n
## [1] 11
##
## $options$which
## [1] "LA"
##
## $options$nev
## [1] 1
##
## $options$tol
## [1] 0
##
## $options$ncv
## [1] 0
##
## $options$ldv
## [1] 0
##
## $options$ishift
## [1] 1
##
## $options$maxiter
## [1] 3000
##
## $options$nb
## [1] 1
##
## $options$mode
## [1] 1
##
## $options$start
## [1] 1
##
## $options$sigma
## [1] 0
##
## $options$sigmai
## [1] 0
##
## $options$info
## [1] 0
##
## $options$iter
## [1] 4
##
## $options$nconv
## [1] 1
##
## $options$numop
## [1] 19
##
## $options$numopb
## [1] 0
##
## $options$numreo
## [1] 13
Retrieving the vector only (scaled values)
eigen_centrality(net1)$vector
## [1] 0.2259630 0.0645825 0.3786244 0.2415182 0.5709057 0.9846544 1.0000000
## [8] 0.8386195 0.9113529 0.9986474 0.8450304
my_plot +
geom_node_point(
aes(
size = eigen_centrality(net1)$vector,
color = "red",
alpha = .5
),
show.legend = FALSE
)
Compare degree centrality and eigenvector centrality
tibble(
node = 1:vcount(net1),
degree_cent = igraph::degree(net1),
eigen_cent = eigen_centrality(net1)$vector
) %>%
arrange(desc(degree_cent))
Calculate
(btw_net1 <- betweenness(net1, normalized = T))
## [1] 0.00000000 0.00000000 0.00000000 0.20000000 0.08518519 0.21851852
## [7] 0.05925926 0.36296296 0.16296296 0.02962963 0.32592593
Plot
my_plot +
geom_node_point(
aes(
size = btw_net1,
color = "red",
alpha = .5
),
show.legend = FALSE
)
Compare degree centrality, eigenvector centrality, and betweenness centrality
tibble(
node = 1:vcount(net1),
degree_cent = igraph::degree(net1),
eigen_cent = eigen_centrality(net1)$vector,
btw_cent = btw_net1
) %>%
arrange(desc(degree_cent))
How many clusters? Discuss
my_plot
It doesn’t make much sense. At least 4
cliques(net1, min = 3)
## [[1]]
## + 3/11 vertices, from e0b5591:
## [1] 6 8 10
##
## [[2]]
## + 3/11 vertices, from e0b5591:
## [1] 8 9 10
##
## [[3]]
## + 3/11 vertices, from e0b5591:
## [1] 6 7 10
##
## [[4]]
## + 3/11 vertices, from e0b5591:
## [1] 6 7 11
##
## [[5]]
## + 3/11 vertices, from e0b5591:
## [1] 7 9 10
##
## [[6]]
## + 3/11 vertices, from e0b5591:
## [1] 3 5 11
cliques(collab_net, min = 6)
## [[1]]
## + 6/29 vertices, named, from c98a2b1:
## [1] 3 10 19 20 23 27
##
## [[2]]
## + 6/29 vertices, named, from c98a2b1:
## [1] 6 10 13 15 20 23
##
## [[3]]
## + 6/29 vertices, named, from c98a2b1:
## [1] 3 6 9 19 20 23
##
## [[4]]
## + 6/29 vertices, named, from c98a2b1:
## [1] 3 6 10 19 20 23
##
## [[5]]
## + 6/29 vertices, named, from c98a2b1:
## [1] 6 10 13 15 16 20
(comm <- cluster_edge_betweenness(collab_net, directed = FALSE))
## IGRAPH clustering edge betweenness, groups: 16, mod: 0.058
## + groups:
## $`1`
## [1] "1" "12"
##
## $`2`
## [1] "2"
##
## $`3`
## [1] "3" "6" "9" "10" "13" "15" "16" "19" "20" "23" "27"
##
## $`4`
## + ... omitted several groups/vertices
I can retrieve each node’s membership to a cluster
sort(membership(comm))
## 1 12 2 3 6 9 10 13 15 16 19 20 23 27 4 14 5 7 21 8 11 17 18 22 24 25
## 1 1 2 3 3 3 3 3 3 3 3 3 3 3 4 4 5 6 6 7 8 9 10 11 12 13
## 26 28 29
## 14 15 16
modularity(comm)
## [1] 0.05844735
Fast & Greedy: doesn’t search the network so thoroughly, it partitions the network then re-shuffles until it reaches high modularity
cluster_fast_greedy(collab_net)
## IGRAPH clustering fast greedy, groups: 7, mod: 0.3
## + groups:
## $`1`
## [1] "2" "4" "7" "9" "14" "21"
##
## $`2`
## [1] "3" "8" "10" "18" "19" "24" "25" "26" "27" "28"
##
## $`3`
## [1] "6" "13" "15" "16" "17" "20" "22" "23"
##
## $`4`
## + ... omitted several groups/vertices
Directed networks: based on random walks
cluster_infomap(sup_net)
## IGRAPH clustering infomap, groups: 7, mod: 0.47
## + groups:
## $`1`
## [1] "V1" "V7" "V21" "V29"
##
## $`2`
## [1] "V2" "V4" "V8" "V9" "V14" "V28"
##
## $`3`
## [1] "V3" "V18" "V19" "V25" "V26" "V27"
##
## $`4`
## + ... omitted several groups/vertices
For larger undirected networks, consider Louvain or Leiden
cluster_louvain(collab_net)
## IGRAPH clustering multi level, groups: 7, mod: 0.3
## + groups:
## $`1`
## [1] "1" "12"
##
## $`2`
## [1] "2" "4" "7" "9" "14"
##
## $`3`
## [1] "3" "8" "10" "18" "19" "21" "24" "25" "26" "27" "28"
##
## $`4`
## + ... omitted several groups/vertices
plot
collab_net %>%
mutate(comp = group_components()) %>%
filter(comp == 1) %>%
mutate(subgroups = group_fast_greedy()) %>%
ggraph(layout = "fr") +
geom_edge_fan(
width = .5,
color = "grey30"
) +
geom_node_point(
aes(color = factor(subgroups)),
size = 5
)
Load attributes
node_attributes <-
here("data", "attributes.csv") %>%
read_delim(delim = ";")
## New names:
## Rows: 29 Columns: 12
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: ";" chr
## (5): id, education, gender, family, children dbl (7): ...1, age, age3,
## seniority, seniority_rec, soc_capital, satisfaction
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
vertex_attr(collab_net) <- node_attributes
Plotting the network: cohesive subgroups, gender, seniority
collab_net %>%
mutate(comp = group_components()) %>%
filter(comp == 1) %>%
mutate(subgroups = group_fast_greedy()) %>%
ggraph(layout = "fr") +
geom_edge_fan(
width = .5,
color = "grey30"
) +
geom_node_point(
aes(
color = factor(subgroups),
size = seniority,
shape = gender
)
)
we’re going to work on the Sociable ego-network data (slightly modified)
download files
three files (show them):
Node attributes
(ego_attr <- read_csv2(file = here("data", "ego-class.csv")))
## ℹ Using "','" as decimal and "'.'" as grouping mark. Use `read_delim()` for more control.
## Rows: 229 Columns: 15
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ";"
## chr (12): random, gender, marital, educ, occ.typ, tel.int, dis.phys.count.ca...
## dbl (3): ego_id, age, mmse
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Alters’ attributes
(alter_attr <- read_csv(file = here("data", "alter-data.csv")))
## Rows: 2729 Columns: 9
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (7): freq.rec, week.daily, alter.sex, alter.cores, role, role.rec, intgen
## dbl (2): ego_id, alter_id
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Alter-alter ties
(alter_alter <- read_csv(here("data", "alter-ties.csv")))
## Rows: 8303 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (3): ego_id, altsource_id, alttarg_id
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
alter_alter
by
ego_id
and turn each ego-network into an
igraph
objectMore efficient: creating an egor
object and generating a
list of igraph networks
library(egor)
(
whole_df <-
threefiles_to_egor(
egos = ego_attr,
alters.df = alter_attr,
edges = alter_alter,
ID.vars = list(
ego = "ego_id",
alter = "alter_id",
source = "altsource_id",
target = "alttarg_id"
)
)
)
## # EGO data (active): 229 × 15
## .egoID random age gender marital educ occ.typ tel.int dis.phys.count.cat
## * <dbl> <chr> <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 1 No 84 Male Not marri… midd… 3. Ret… No One
## 2 2 No 81 Male Married prim… 1. Ele… No One
## 3 3 No 83 Male Married prim… 3. Ret… No Multiple
## 4 4 No 77 Female Married prim… 1. Ele… No One
## 5 5 No 93 Male Married prim… 1. Ele… No Multiple
## # ℹ 224 more rows
## # ℹ 6 more variables: hcare.count.cat <chr>, adl.rec <chr>, gds.rec <chr>,
## # demen <chr>, rsa <chr>, mmse <dbl>
## # ALTER data: 2,729 × 9
## .altID .egoID freq.rec week.daily alter.sex alter.cores role role.rec intgen
## * <dbl> <dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 101 1 yearly No Male No child imm.fam Yes
## 2 102 1 yearly No Male No child imm.fam Yes
## 3 103 1 yearly No Male No child imm.fam Yes
## # ℹ 2,726 more rows
## # AATIE data: 8,303 × 3
## .egoID .srcID .tgtID
## * <dbl> <dbl> <dbl>
## 1 1 101 102
## 2 1 101 103
## 3 1 101 104
## # ℹ 8,300 more rows
What kind of object is it?
Different parts can be inspected
whole_df[[3]]
Now we can easily convert all ego-networks into igraph
objects
graph_list <- as_igraph(whole_df)
As a list, we can inspect each ego network
graph_list[[203]]
## IGRAPH be74ba1 UN-- 7 10 --
## + attr: .egoID (g/n), name (v/c), freq.rec (v/c), week.daily (v/c),
## | alter.sex (v/c), alter.cores (v/c), role (v/c), role.rec (v/c),
## | intgen (v/c)
## + edges from be74ba1 (vertex names):
## [1] 20601--20602 20601--20603 20601--20604 20601--20605 20602--20603
## [6] 20602--20604 20602--20605 20603--20604 20603--20605 20604--20605
Calculating size of ego-networks
whole_df[[1]] <-
whole_df[[1]] %>%
mutate(net_size = map_int(graph_list, vcount))
whole_df[[1]] %>%
summarise(
mean_size = mean(net_size),
sd_size = sd(net_size)
)
Calculating number of cohesive subgroups in each ego-network
through Girvan-Newman algorithm + integrating it into the
egor
object
whole_df[[1]] <-
whole_df[[1]] %>%
mutate(
clusters = graph_list %>%
map_int(\(egonet)
cluster_edge_betweenness(egonet) %>%
length()
)
)
count(whole_df[[1]], clusters)
Testing the hypothetical association between number of cohesive sub-groups and cognitive abilities on the Sociable dataset
whole_df[[1]] %>%
ggplot(aes(mmse)) +
# scale_fill_grey() +
geom_histogram(binwidth = 1, color = "black", fill = "white") +
geom_vline(xintercept = median(whole_df[[1]]$mmse, na.rm = T), color = "black", linetype = "dashed") +
theme_bw() +
labs(x = "Cognitive functioning (MMSE)", y = "Frequency")
## Warning: Removed 3 rows containing non-finite outside the scale range
## (`stat_bin()`).
whole_df[[1]] %>%
ggplot(aes(clusters)) +
geom_bar() +
geom_vline(xintercept = median(whole_df[[1]]$clusters, na.rm = TRUE), color = "red", linetype = "dashed") +
scale_x_continuous(breaks = 0:max(whole_df[[1]]$clusters)) +
labs(y = "") +
xlab("# of cohesive subgroups")
Association of MMSE with number of cohesive subgroups
whole_df[[1]] %>%
ggplot(aes(clusters, mmse)) +
geom_point() +
geom_smooth() +
geom_jitter() +
scale_x_continuous(breaks = 0:16) +
geom_hline(yintercept = 27, color = "red") +
geom_hline(yintercept = median(whole_df[[1]]$mmse, na.rm = T), linetype = "dashed") +
geom_vline(xintercept = median(whole_df[[1]]$clusters), linetype = "dashed") +
theme_minimal()
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Warning: Removed 3 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).
Final model adjusting for depression
m <- mmse ~ clusters + net_size + age + educ + gender
ols <- lm(m, data = whole_df[[1]])
sjPlot::tab_model(ols, vcov.fun = "HC", show.se = TRUE)
mmse | ||||
---|---|---|---|---|
Predictors | Estimates | std. Error | CI | p |
(Intercept) | 37.01 | 8.02 | 21.21 – 52.80 | <0.001 |
clusters | 0.64 | 0.20 | 0.24 – 1.04 | 0.002 |
net size | 0.11 | 0.07 | -0.03 – 0.25 | 0.116 |
age | -0.18 | 0.09 | -0.36 – -0.01 | 0.042 |
educ [middle] | -2.40 | 1.34 | -5.05 – 0.25 | 0.075 |
educ [primary] | -1.83 | 1.09 | -3.98 – 0.32 | 0.094 |
educ [uni or higher] | 1.08 | 1.19 | -1.25 – 3.42 | 0.361 |
gender [Male] | 0.02 | 0.86 | -1.68 – 1.71 | 0.985 |
Observations | 226 | |||
R2 / R2 adjusted | 0.145 / 0.117 |
Visualize estimates
p <- jtools::plot_summs(
ols,
coefs = c(
"cohesive subgroups" = "clusters",
"network size" = "net_size"
# ,
# "age" = "age",
# "gender: male" = "gendermale",
# "education: lower secondary" = "education2",
# "education: higher secondary" = "education3",
# "education: tertiary" = "education4",
# "assisted living facility" = "rsa1",
# "GDS > 1" = "gds.2yes"
),
colors = "black",
scale = F,
robust = "HC"
# ,
# inner_ci_level = .9
# ,
# colors = "rainbow"
)
## Registered S3 method overwritten by 'future':
## method from
## all.equal.connection parallelly
p +
theme_bw() +
labs(x = "", y = "")
For statistical inference we need a differet suite of packages
library(statnet)
## Caricamento del pacchetto richiesto: tergm
## Caricamento del pacchetto richiesto: ergm
## Caricamento del pacchetto richiesto: network
##
## 'network' 1.19.0 (2024-12-08), part of the Statnet Project
## * 'news(package="network")' for changes since last version
## * 'citation("network")' for citation information
## * 'https://statnet.org' for help, support, and other information
##
## Caricamento pacchetto: 'network'
## I seguenti oggetti sono mascherati da 'package:igraph':
##
## %c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,
## get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,
## is.directed, list.edge.attributes, list.vertex.attributes,
## set.edge.attribute, set.vertex.attribute
##
## 'ergm' 4.8.1 (2025-01-20), part of the Statnet Project
## * 'news(package="ergm")' for changes since last version
## * 'citation("ergm")' for citation information
## * 'https://statnet.org' for help, support, and other information
## 'ergm' 4 is a major update that introduces some backwards-incompatible
## changes. Please type 'news(package="ergm")' for a list of major
## changes.
## Caricamento del pacchetto richiesto: networkDynamic
##
## 'networkDynamic' 0.11.5 (2024-11-21), part of the Statnet Project
## * 'news(package="networkDynamic")' for changes since last version
## * 'citation("networkDynamic")' for citation information
## * 'https://statnet.org' for help, support, and other information
## Registered S3 method overwritten by 'tergm':
## method from
## simulate_formula.network ergm
##
## 'tergm' 4.2.1 (2024-10-08), part of the Statnet Project
## * 'news(package="tergm")' for changes since last version
## * 'citation("tergm")' for citation information
## * 'https://statnet.org' for help, support, and other information
##
## Caricamento pacchetto: 'tergm'
## Il seguente oggetto è mascherato da 'package:ergm':
##
## snctrl
## Caricamento del pacchetto richiesto: ergm.count
##
## 'ergm.count' 4.1.2 (2024-06-15), part of the Statnet Project
## * 'news(package="ergm.count")' for changes since last version
## * 'citation("ergm.count")' for citation information
## * 'https://statnet.org' for help, support, and other information
## Caricamento del pacchetto richiesto: sna
## Caricamento del pacchetto richiesto: statnet.common
##
## Caricamento pacchetto: 'statnet.common'
## Il seguente oggetto è mascherato da 'package:ergm':
##
## snctrl
## I seguenti oggetti sono mascherati da 'package:base':
##
## attr, order
## sna: Tools for Social Network Analysis
## Version 2.8 created on 2024-09-07.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
## For citation information, type citation("sna").
## Type help(package="sna") to get started.
##
## Caricamento pacchetto: 'sna'
## I seguenti oggetti sono mascherati da 'package:igraph':
##
## betweenness, bonpow, closeness, components, degree, dyad.census,
## evcent, hierarchy, is.connected, neighborhood, triad.census
## Caricamento del pacchetto richiesto: tsna
##
## 'statnet' 2019.6 (2019-06-13), part of the Statnet Project
## * 'news(package="statnet")' for changes since last version
## * 'citation("statnet")' for citation information
## * 'https://statnet.org' for help, support, and other information
## unable to reach CRAN
Creating a network object
(support_net <-
network(
x = as_adjacency_matrix(sup_net),
vertex.attr = node_attributes
))
## Network attributes:
## vertices = 29
## directed = TRUE
## hyper = FALSE
## loops = FALSE
## multiple = FALSE
## bipartite = FALSE
## total edges= 99
## missing edges= 0
## non-missing edges= 99
##
## Vertex attribute names:
## ...1 age age3 children education family gender id satisfaction seniority seniority_rec soc_capital vertex.names
##
## No edge attributes
Another way (provided the intergraph
packages is
installed):
vertex_attr(sup_net) <- node_attributes
(support_net <- intergraph::asNetwork(sup_net))
## Network attributes:
## vertices = 29
## directed = TRUE
## hyper = FALSE
## loops = FALSE
## multiple = FALSE
## bipartite = FALSE
## total edges= 99
## missing edges= 0
## non-missing edges= 99
##
## Vertex attribute names:
## ...1 age age3 children education family gender id satisfaction seniority seniority_rec soc_capital vertex.names
##
## No edge attributes
Inspecting attributes
support_net %v% "age"
## [1] 40 41 25 28 28 31 39 28 31 28 33 52 31 27 31 31 32 31 34 40 28 31 24 27 31
## [26] 24 34 27 36
Different functions to get the usual descriptive metrics:
gden(support_net)
## [1] 0.1219212
Some of them are masked by igraph
:
(indeg_sup <- sna::degree(support_net, gmode = "digraph", cmode = "indegree"))
## [1] 4 6 3 4 1 5 1 2 2 7 0 5 7 2 7 5 3 0 5 5 1 2 2 2 7 1 6 2 2
Luckily, ggraph
supports network
objects:
support_net %>%
ggraph(layout = "nicely") +
geom_edge_fan(
arrow = arrow(length = unit(2, "mm")),
end_cap = circle(3, "mm"),
color = "grey30",
width = .3
) +
geom_node_point(
aes(color = gender),
size = indeg_sup,
alpha = .5,
show.legend = FALSE
) +
theme_void()
Let’s find the traces left by reciprocation in our network data.
Let’s count the complete dyads (i.e., pairs of nodes with reciprocal ties). Warning: the number of ties in those dyads is twice that of complete dyads!
mutuality(support_net)
## Mut
## 25
What’s the state of the other dyads in the network?
sna::dyad.census(support_net)
## Mut Asym Null
## [1,] 25 49 332
812 dyads, 406 pairs of nodes (29 * 28 / 2), 99 dyads with at least one tie, of which 25 are symmetrical, which means 50 ties are in symmetric dyads + 49 which are not in symmetric dyads \(=\) 99 dyads with a tie
What should we compare theses numbers to?
Let’s compare it with a random network with 29 nodes. We need to specify a probability for ties to occur (let’s pick density). We then generate a random graph according to an Erdös-Rényi model with \(n =\) 29 and \(p =\) 0.5.
random_net <- rgraph(n = 29, m = 1, tprob = .5)
We then count the complete dyads in the generated random graph and compare it to the empirical network
mutuality(random_net)
## Mut
## 102
Instead of just one instance of a random graph model, we generate a distribution of random graphs according to an E-R model with \(p =\) 0.5.
random_net <- rgraph(n = 29, m = 1000, tprob = .5)
Let’s compare the observed number of complete dyads with the distribution of complete dyads according to the model
hist(mutuality(random_net), xlim = c(0, 200))
abline(v = mutuality(support_net), col = "blue")
Let’s test reciprocation in our observed network against a more realistic distribution: an E-R model with p equal to the raw probability of ties to occur in our netork (i.e., the density)
random_net <- rgraph(n = 29, m = 1000, tprob = gden(support_net))
hist(mutuality(random_net), xlim = c(0, 50))
abline(v = mutuality(support_net), col = "blue")
All these models assume independent observations, while observing \(x_{ij} \& x_{ji}\) is not independent on the observation of \(x_{ij}\) or \(x_{ji}\). We need a model that accounts for stochastic interdependencies between the data.
Specifying a baseline model
m0 <- support_net ~ edges
summary(m0)
## edges
## 99
Fitting the model: MPLE is enough because the model doesn’t assume any interdependencies
fit0 <- ergm(m0)
## Starting maximum pseudolikelihood estimation (MPLE):
## Obtaining the responsible dyads.
## Evaluating the predictor and response matrix.
## Maximizing the pseudolikelihood.
## Finished MPLE.
## Evaluating log-likelihood at the estimate.
summary(fit0)
## Call:
## ergm(formula = m0)
##
## Maximum Likelihood Results:
##
## Estimate Std. Error MCMC % z value Pr(>|z|)
## edges -1.9744 0.1073 0 -18.41 <1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Null Deviance: 1125.7 on 812 degrees of freedom
## Residual Deviance: 602.1 on 811 degrees of freedom
##
## AIC: 604.1 BIC: 608.8 (Smaller is better. MC Std. Err. = 0)
We can compute the odds-ratio from the log-odds
coef(fit0)
## edges
## -1.974362
exp(coef(fit0)) / (1 + exp(coef(fit0)))
## edges
## 0.1219212
It’s equal to the density of the network.
Dyadic independence model
m1 <- update.formula(m0, . ~ . + mutual)
summary(m1)
## edges mutual
## 99 25
Fitting now requires MCMCMLE
fit1 <- ergm(m1)
## Starting maximum pseudolikelihood estimation (MPLE):
## Obtaining the responsible dyads.
## Evaluating the predictor and response matrix.
## Maximizing the pseudolikelihood.
## Finished MPLE.
## Starting Monte Carlo maximum likelihood estimation (MCMLE):
## Iteration 1 of at most 60:
## Warning: 'glpk' selected as the solver, but package 'Rglpk' is not available;
## falling back to 'lpSolveAPI'. This should be fine unless the sample size and/or
## the number of parameters is very big.
## 1
## Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0163.
## Convergence test p-value: 0.0036. Converged with 99% confidence.
## Finished MCMLE.
## Evaluating log-likelihood at the estimate. Fitting the dyad-independent submodel...
## Bridging between the dyad-independent submodel and the full model...
## Setting up bridge sampling...
## Using 16 bridges: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .
## Bridging finished.
##
## This model was fit using MCMC. To examine model diagnostics and check
## for degeneracy, use the mcmc.diagnostics() function.
summary(fit1)
## Call:
## ergm(formula = m1)
##
## Monte Carlo Maximum Likelihood Results:
##
## Estimate Std. Error MCMC % z value Pr(>|z|)
## edges -2.6059 0.1569 0 -16.605 <1e-04 ***
## mutual 2.6288 0.3523 0 7.462 <1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Null Deviance: 1125.7 on 812 degrees of freedom
## Residual Deviance: 550.2 on 810 degrees of freedom
##
## AIC: 554.2 BIC: 563.6 (Smaller is better. MC Std. Err. = 0.76)
Markov model
m2 <- update.formula(m1, . ~ . + twopath + gwesp(decay = .5, fixed = T))
## alternativa
#m2 <- support_net ~ edges + mutual + gwesp(.5, fixed = T) + gwdsp(.5, fixed = T)
fit2 <- ergm(m2)
## Starting maximum pseudolikelihood estimation (MPLE):
## Obtaining the responsible dyads.
## Evaluating the predictor and response matrix.
## Maximizing the pseudolikelihood.
## Finished MPLE.
## Starting Monte Carlo maximum likelihood estimation (MCMLE):
## Iteration 1 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 1.1058.
## Estimating equations are not within tolerance region.
## Iteration 2 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0099.
## Convergence test p-value: 0.2068. Not converged with 99% confidence; increasing sample size.
## Iteration 3 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0180.
## Convergence test p-value: 0.1926. Not converged with 99% confidence; increasing sample size.
## Iteration 4 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0306.
## Convergence test p-value: 0.0179. Not converged with 99% confidence; increasing sample size.
## Iteration 5 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0034.
## Convergence test p-value: 0.0043. Converged with 99% confidence.
## Finished MCMLE.
## Evaluating log-likelihood at the estimate. Fitting the dyad-independent submodel...
## Bridging between the dyad-independent submodel and the full model...
## Setting up bridge sampling...
## Using 16 bridges: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .
## Bridging finished.
##
## This model was fit using MCMC. To examine model diagnostics and check
## for degeneracy, use the mcmc.diagnostics() function.
summary(fit2)
## Call:
## ergm(formula = m2)
##
## Monte Carlo Maximum Likelihood Results:
##
## Estimate Std. Error MCMC % z value Pr(>|z|)
## edges -2.23342 0.34409 0 -6.491 <1e-04 ***
## mutual 2.00211 0.35443 0 5.649 <1e-04 ***
## twopath -0.24523 0.05625 0 -4.359 <1e-04 ***
## gwesp.OTP.fixed.0.5 1.07669 0.15227 0 7.071 <1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Null Deviance: 1125.7 on 812 degrees of freedom
## Residual Deviance: 493.2 on 808 degrees of freedom
##
## AIC: 501.2 BIC: 520 (Smaller is better. MC Std. Err. = 1.373)
Let’s model degree distribution
m3 <- update.formula(m2, . ~ . + gwidegree(.5, fixed = T) + gwodegree(.5, fixed = T))
fit3 <- ergm(m3)
## Starting maximum pseudolikelihood estimation (MPLE):
## Obtaining the responsible dyads.
## Evaluating the predictor and response matrix.
## Maximizing the pseudolikelihood.
## Finished MPLE.
## Starting Monte Carlo maximum likelihood estimation (MCMLE):
## Iteration 1 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 1.0304.
## Estimating equations are not within tolerance region.
## Iteration 2 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0957.
## Convergence test p-value: 0.6142. Not converged with 99% confidence; increasing sample size.
## Iteration 3 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0135.
## Convergence test p-value: 0.1400. Not converged with 99% confidence; increasing sample size.
## Iteration 4 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0499.
## Convergence test p-value: 0.3290. Not converged with 99% confidence; increasing sample size.
## Iteration 5 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0269.
## Convergence test p-value: < 0.0001. Converged with 99% confidence.
## Finished MCMLE.
## Evaluating log-likelihood at the estimate. Fitting the dyad-independent submodel...
## Bridging between the dyad-independent submodel and the full model...
## Setting up bridge sampling...
## Using 16 bridges: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .
## Bridging finished.
##
## This model was fit using MCMC. To examine model diagnostics and check
## for degeneracy, use the mcmc.diagnostics() function.
summary(fit3)
## Call:
## ergm(formula = m3)
##
## Monte Carlo Maximum Likelihood Results:
##
## Estimate Std. Error MCMC % z value Pr(>|z|)
## edges -2.07979 0.44223 0 -4.703 <1e-04 ***
## mutual 2.14735 0.44296 0 4.848 <1e-04 ***
## twopath -0.25111 0.05879 0 -4.271 <1e-04 ***
## gwesp.OTP.fixed.0.5 1.02806 0.17033 0 6.036 <1e-04 ***
## gwideg.fixed.0.5 -0.64257 0.65093 0 -0.987 0.324
## gwodeg.fixed.0.5 -0.05031 0.77698 0 -0.065 0.948
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Null Deviance: 1125.7 on 812 degrees of freedom
## Residual Deviance: 494.1 on 806 degrees of freedom
##
## AIC: 506.1 BIC: 534.3 (Smaller is better. MC Std. Err. = 0.5511)
Correlation between node-level attributes and our network
m4 <- update.formula(m2, . ~ . + absdiff("age") + nodeicov("age") + nodeocov("age"))
fit4 <- ergm(m4)
## Starting maximum pseudolikelihood estimation (MPLE):
## Obtaining the responsible dyads.
## Evaluating the predictor and response matrix.
## Maximizing the pseudolikelihood.
## Finished MPLE.
## Starting Monte Carlo maximum likelihood estimation (MCMLE):
## Iteration 1 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.7926.
## Estimating equations are not within tolerance region.
## Iteration 2 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0737.
## Convergence test p-value: 0.4819. Not converged with 99% confidence; increasing sample size.
## Iteration 3 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.1581.
## Estimating equations are not within tolerance region.
## Iteration 4 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.1072.
## Estimating equations are not within tolerance region.
## Iteration 5 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0320.
## Convergence test p-value: 0.3373. Not converged with 99% confidence; increasing sample size.
## Iteration 6 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0204.
## Convergence test p-value: 0.0360. Not converged with 99% confidence; increasing sample size.
## Iteration 7 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0305.
## Convergence test p-value: 0.0016. Converged with 99% confidence.
## Finished MCMLE.
## Evaluating log-likelihood at the estimate. Fitting the dyad-independent submodel...
## Bridging between the dyad-independent submodel and the full model...
## Setting up bridge sampling...
## Using 16 bridges: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .
## Bridging finished.
##
## This model was fit using MCMC. To examine model diagnostics and check
## for degeneracy, use the mcmc.diagnostics() function.
summary(fit4)
## Call:
## ergm(formula = m4)
##
## Monte Carlo Maximum Likelihood Results:
##
## Estimate Std. Error MCMC % z value Pr(>|z|)
## edges -3.23295 0.73258 0 -4.413 <1e-04 ***
## mutual 2.12735 0.35956 0 5.916 <1e-04 ***
## twopath -0.22760 0.05456 0 -4.172 <1e-04 ***
## gwesp.OTP.fixed.0.5 1.04272 0.15128 0 6.893 <1e-04 ***
## absdiff.age -0.03129 0.01861 0 -1.681 0.0927 .
## nodeicov.age 0.04393 0.01780 0 2.468 0.0136 *
## nodeocov.age -0.01038 0.01871 0 -0.555 0.5791
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Null Deviance: 1125.7 on 812 degrees of freedom
## Residual Deviance: 488.1 on 805 degrees of freedom
##
## AIC: 502.1 BIC: 535 (Smaller is better. MC Std. Err. = 0.7257)
Multiplexity
m5 <- update.formula(m4, . ~ . + dyadcov(intergraph::asNetwork(collab_net)))
summary(ergm(m5))
## Starting maximum pseudolikelihood estimation (MPLE):
## Obtaining the responsible dyads.
## Evaluating the predictor and response matrix.
## Maximizing the pseudolikelihood.
## Finished MPLE.
## Starting Monte Carlo maximum likelihood estimation (MCMLE):
## Iteration 1 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 1.1698.
## Estimating equations are not within tolerance region.
## Iteration 2 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.1338.
## Estimating equations are not within tolerance region.
## Iteration 3 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0801.
## Convergence test p-value: 0.9820. Not converged with 99% confidence; increasing sample size.
## Iteration 4 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.1487.
## Estimating equations are not within tolerance region.
## Iteration 5 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.1207.
## Estimating equations are not within tolerance region.
## Iteration 6 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0914.
## Convergence test p-value: 0.5585. Not converged with 99% confidence; increasing sample size.
## Iteration 7 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.1062.
## Estimating equations are not within tolerance region.
## Estimating equations did not move closer to tolerance region more than 1 time(s) in 4 steps; increasing sample size.
## Iteration 8 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0648.
## Convergence test p-value: 0.0235. Not converged with 99% confidence; increasing sample size.
## Iteration 9 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0606.
## Convergence test p-value: 0.0151. Not converged with 99% confidence; increasing sample size.
## Iteration 10 of at most 60:
## 1 Optimizing with step length 1.0000.
## The log-likelihood improved by 0.0172.
## Convergence test p-value: 0.0020. Converged with 99% confidence.
## Finished MCMLE.
## Evaluating log-likelihood at the estimate. Fitting the dyad-independent submodel...
## Bridging between the dyad-independent submodel and the full model...
## Setting up bridge sampling...
## Using 16 bridges: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .
## Bridging finished.
##
## This model was fit using MCMC. To examine model diagnostics and check
## for degeneracy, use the mcmc.diagnostics() function.
## Call:
## ergm(formula = m5)
##
## Monte Carlo Maximum Likelihood Results:
##
## Estimate Std. Error MCMC %
## edges -4.87029 0.95494 0
## mutual 2.18463 0.61228 0
## twopath -0.29619 0.05483 0
## gwesp.OTP.fixed.0.5 0.87276 0.15730 0
## absdiff.age -0.03253 0.02339 0
## nodeicov.age 0.06743 0.02097 0
## nodeocov.age 0.01545 0.02087 0
## dyadcov.intergraph::asNetwork(collab_net).mutual 3.48254 0.54774 0
## dyadcov.intergraph::asNetwork(collab_net).utri 2.25068 0.36573 0
## dyadcov.intergraph::asNetwork(collab_net).ltri 2.15149 0.37502 0
## z value Pr(>|z|)
## edges -5.100 < 1e-04 ***
## mutual 3.568 0.00036 ***
## twopath -5.402 < 1e-04 ***
## gwesp.OTP.fixed.0.5 5.548 < 1e-04 ***
## absdiff.age -1.391 0.16435
## nodeicov.age 3.216 0.00130 **
## nodeocov.age 0.740 0.45930
## dyadcov.intergraph::asNetwork(collab_net).mutual 6.358 < 1e-04 ***
## dyadcov.intergraph::asNetwork(collab_net).utri 6.154 < 1e-04 ***
## dyadcov.intergraph::asNetwork(collab_net).ltri 5.737 < 1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Null Deviance: 1125.7 on 812 degrees of freedom
## Residual Deviance: 393.6 on 802 degrees of freedom
##
## AIC: 413.6 BIC: 460.6 (Smaller is better. MC Std. Err. = 0.753)