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• Explaining vs. describing a social network


• Identifying causal mechanisms of a social phenomenon (i.e., 
a causal chain of events involving social actors’ decisions 
under macro-level constraints; Hedström, 2005; Elster, 2015)


• Formation of the network structure


• Composition (diffusion of certain attributes)

Causal mechanisms



Example: what mechanisms explain 
the observed network structure 
(Bearman et al., 2004)?



Example: what mechanisms explain 
the observed network composition 
(Bianchi et al., work in progress)?
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Identifying a network mechanism —> describing a regular 
pattern of ties and attributes

Example: a friendship 
network and musical 
tastes in a workplace
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• Inferring the effect of unobserved, dynamic relational processes on the 
evolution of a network from the prevalence or incidence of certain local 
configurations


• Network local configurations as “archeological traces” left by causal 
mechanisms (White, 1970; Lusher et al., 2013)


• The relative effect size of these processes can be estimated by 
computing statistics of empirical network data —> Maximum likelihood 
or method of moments (numerical simulations)

Statistical models of 
social networks 

(Statistical inference)
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Practical example: 

Reciprocity in a coworking space

t = 0 t = 1

Name generator:


Who do you usually turn to if you 
need emotional or material support?



Statnet

• Suite of packages for statistical analysis of network data


• Used primarily in the sociological/anthropological/psychological community of 
SNA 


• Comprende:


• network: data structure for handling and manipulating network objects in R


• sna: tools for descriptive statistics (connectivity, centrality, clustering, etc.)


• ergm: Exponential Random Graph Models (next session)


• Other (tergm, stergm, latentnet, ergm.ego, etc.)



Random 

graph models

• Random (stochastic) graph model: a family of random tie-
variables with a fixed number of nodes n


• The observed ties are only a subset of the set of all 
possible ties


• For each pair of nodes i and j, X_ij is a random tie variable 

• An observed network is just a realization of all the possible 
of a random graph
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Random graph models
↭ (Stochastic) models of graphs: defined as a family of random

tie-variables

↭ N = {1, . . . , n} is fixed and predetermined

↭ Let J be the set of all possible relational ties for N (no

self-loops) (cardinality of J is
n(n→1)

2 )

↭ E (set of ties) is a random subset of J
↭ For any element of J (i,j), Xij is a tie-variable which can be

either 0 or 1

↭ All tie-variables make up a stochastic adjacency matrix

X = [Xij ]

↭ A target empirical network is a realization x = [xij ] of X
↭ Erd!s-Rényi model (Gilbert): G(n,p) (a graph G with n vertices

and Pr(xij = 1) = p)

Federico Bianchi Social Network Analysis



Erdős-Rényi-Gilbert Model

• Random graph G(n, p)


• n: number of nodes


• p: probability that X_ij = 1


• Tie-variables are identically distributed 
and independent


• Bernouilli process



Stochastic dependence of observations

• E-R model assumes independence of 
observations


• Pr(X_ji = 1) stochastically depends on 
Pr(X_ij = 1)

ji

t = 0 t = 1



ERGM: Exponential Random Graph Models




• : the likelihood to observe a given graph 
x (realization of the random graph X)


• The functions  are count statistics of local graph 
configurations (traces of the processes assumed to 
have generated x)


• The parameters  weight the relative importance of 
the count statistics, thereby expressing their effect size


• Maximum Likelihood Estimation

Pr(X = x |θ) = 1
κ(θ) exp θ1z1(x) + θ2z2(x) + … + θpzp(x)

Pr(X = x |θ)

zk(x)

θk



Markov Chain Monte Carlo Maximum Likelihood Estimation

1. Choose a parameter vector (i.e., assign a random value to 
specified parameters)


2. Start with a random network with the given number of nodes


3. Select a random dyad


4. Stochastically update the value of the selected dyad according to 
the parameter vector at 1.


5. Repeat 3. and 4.


Output: The process will eventually converge (Markov chain) to a 
random graph distribution that has the count statistics of the 
observed network as a central tendency (maximum likelihood)



• A relational process can be linked to a local configuration, of 
which count statistics can be computed


• Observations are not independent


• Each local configuration comes with a stochastic dependency 
assumption: es.,  P(xij) ∩ P(xji) = P(xij |xji) ⋅ P(xji)

Statistical models of 
social networks: 

local configurations and 
stochastic dependency 
assumptions

ji



• Generating (simulating) a random graph distribution 
centred on the observed statistics


• Identifying a parameter vector


• Computing uncertainty measures (hypothesis testing)

Statistical models of 
social networks: 

hypothesis testing
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GWESP: Geometrically Weighted Edgewise Shared Partners

Counts the number of closed triads for each pair of nodes (with a 
marginally decreasing effect α



We need to specify one more 
statistic: the number of open 
triads, otherwise the model 
might not converge because 
the estimation algorithm does 
not have enough information 
to generate a random graph 
distribution centred on the 
observed statistics



Our model

Pr(X = x |θ) = 1
κ(θ) exp θ1 ⋅ edges + θ2 ⋅ mutual dyads + θ3 ⋅ open triads + θ4 ⋅ GWESP
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• Tie-based models (ERGM-family; Lusher et al., 2013): it 
samples ties, not nodes (agents)


• the occurrence of a tie is assessed independently on agents’ 
multinomial choice, typical of many decision-making contexts


• are indifferent to the specific tie sequences through which 
particular configurations emerge (Block et al., 2019)

ERGM: 

Limits
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• Computational, dynamic models that 
formalize a population of interdependent 
social actors (i.e., agents) with specific 
properties, interacting according to a set 
of behavioural rules within certain 
environmental constraints (Gilbert & 
Troitzsch, 2005; Squazzoni, 2012; 
Hedström & Manzo, 2015)


• Widely applied in the social sciences to 
explain empirical phenomena (Bianchi & 
Squazzoni, 2015)

ABM: Agent-Based Models



ABMs are models of social interaction

Time t

Age = 35

Gender = F

politics = left

Age = 47

Gender = F

politics = right

Time t + 1

Age = 35

Gender = F

politics = left

Age = 47

Gender = F

politics = left

Age Gender Politics

1 35 F left

2 47 F right

…

n

1 2

1 2

“From factors to actors” 
(Macy & Willer, 2002)



ABMs can model social networks

Time t

Age = 35

Gender = F

Neighbours = ( )

Age = 47

Gender = F

Neighbours = ( )

Time t + 1

Age = 35

Gender = F

Neighbours = ( 2 )

Age = 47

Gender = M

Neighbours = ( 1 )
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• “Structural homology” with causal mechanisms (Manzo, 2014):


• Cognitive or cultural constituents of actors’ decisions


• Social interactions


• Institutional, relational, or spatial constraints


• High flexibility —> wide granularity range of agent modelling 
(Wooldridge & Jennings, 1995)


• Social characteristics: autonomy, interdependence, embeddedness, 
heterogeneity


• Cognitive characteristics: reactivity, proactivity, heuristic-based 
rationality, adaptiveness 

ABM: 

flexibility and 
granularity

Real mechanism 
- Actors 
- Actors’ properties 
- Actors’ (inter)actions 
- Actors’ relationships

Agent-based model 
- Agents 
- Agents’ attributes 
- Agents’ rules of behaviour 
- Agents’ structural constraints



• Agent-based model: the likelihood of a tie to occurr is assessed as a 
function of a focal node-agent’s neighborhood structure/composition


• Each agent decides whether to change the state of an outgoing dyad 
through a multinomial experiment (McFadden, 1973), by optimising 

an objective function 


• The function parameters can be interpreted as the agents’ relative 
preferences on the prevalence of certain local configurations

P(x → x±ij) = exp( fi(β; x±ij))
∑n

h=1 exp(β; fi(x(ih±)))
SAOM 

Stochastic Actor-
Oriented Models
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• Dynamic model: the network evolves as a continuous-
time Markov process X(t) 

• The dynamic process is unobserved except for a finite 
number of waves —> easily fitted to panel data


• Each agent has an opportunity to make changes in its 
neighborhood according to a rate function λi(α, x)

SAOM 

Stochastic Actor-
Oriented Models
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Coevolution of ties and node attributes

7

5

4 1

2 3

6

t = 0

7

5

4 1

2 3

6

t = 1 t = 2

7

5

4
1

2 3

6



To be mathematically tractable, (most) SAOMs (Snijders, 2017) 
assume agents’: 


• access to information about the whole network (e.g., 
geometrically weighted configurations): unplausible for large 
networks or competitive contexts where information is 
strategically concealed (e.g., Renzini et al., 2023) —> 
idiosyncratic models


• changing one tie at each simulation step: prevents modelling 
coordination and collective action (Leifeld & Cranmer, 2019) 
and cascade dynamics driven by threshold-based 
preferences (Renzini et al., 2023)
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SAOM 

Stochastic Actor-
Oriented Models



• tie selection as a multinomial choice based on 
preference optimization: unplausible for cognitive 
relations not requiring psychological investment (liking 
vs. disliking, status attribution)


• myopia: prevents modelling a) backward-looking 
rationality and learning processes; b) forward-
looking rationality (strategic behaviour in competitive 
contexts)

P(x → x±ij) = exp( fi(β; x±ij))
∑n

h=1 exp(β; fi(x(ih±)))

SAOM 

Stochastic Actor-
Oriented Models



• Statistical models of social networks usually provide 
underdetermined evidence of causal mechanisms


• “Network patterns” (Robins, 2015) or “network 
mechanisms” (Stadtfeld & Amati, 2021) underlie different 
possible causal mechanisms

Underdetermination 
of statistical models

j i j i

t = 0 t = 1

1. Complying to a solidarity 
norm (Lindenberg, 2015)


2. Strategically investing in a 
long-term relationship 
(Coleman, 1991)


3. Controlling one’s reputation 
(Buskens & Raub, 2005)



• Prevalence or incidence of the “archeological traces” of unobserved, 
past relational processes (White, 1970, 2008; Lusher et al., 2013)


• Mathematical tractability: sufficient statistics of local configurations 
+ parameters estimated via robust algorithms (maximum likelihood or 
method of moments)


• “Methodological models” (Skvoretz, 1991; Sørensen, 1998): finding 
internal associations within aggregate-level data

Why? 

Methodological 
models
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• Tie-based models (e.g., ERGM-family) are indifferent to the specific tie 
sequences through which particular configurations emerge (Block et al., 
2019)


• To be mathematically tractable, (most) SAOMs need assuming agents’: 


• access to information about the whole network (e.g., geometrically 
weighted configurations): unplausible for large networks or 
competitive contexts where information is strategically concealed 
(e.g., Renzini et al., 2023)


• tie selection as a multinomial choice based on preference 
optimization: unplausible for cognitive relations not requiring 
psychological investment (liking vs. disliking, status attribution)


• myopia: prevents modelling a) backward-looking rationality and 
learning processes; b) forward-looking rationality (strategic 
behaviour in competitive contexts)


• changing one tie at each simulation step: prevents modelling 
coordination and collective action (Leifeld & Cranmer, 2019) and 
cascade dynamics driven by threshold-based preferences (Renzini 
et al., 2019)

ABMs can complement 
for statistical models’ 
limits concerning: 

- actors’ behaviour 

- tie types 

- context



• Tie-based models (e.g., ERGM-family) are indifferent to the specific tie 
sequences through which particular configurations emerge (Block et al., 
2019)


• To be mathematically tractable, (most) SAOMs need assuming agents’: 


• access to information about the whole network (e.g., geometrically 
weighted configurations): unplausible for large networks or 
competitive contexts where information is strategically concealed 
(e.g., instrumental ties, as in Renzini et al., 2023)


• tie selection as a multinomial choice based on preference 
optimization: unplausible for cognitive relations not requiring 
psychological investment (liking vs. disliking, status attribution)


• myopia: prevents modelling a) backward-looking rationality and 
learning processes; b) forward-looking rationality (strategic 
behaviour in competitive contexts)


• changing one tie at each simulation step: prevents modelling 
coordination and collective action (Leifeld & Cranmer, 2019) and 
cascade dynamics driven by threshold-based preferences (Renzini 
et al., 2019)

ABMs can complement 
for statistical models’ 
limits concerning: 

- actors’ behaviour 

- tie types 

- context



• Tie-based models (e.g., ERGM-family) are indifferent to the specific 
tie sequences through which particular configurations emerge (Block 
et al., 2019)


• To be mathematically tractable, (most) SAOMs need assuming 
agents’: 


• access to information about the whole network (e.g., 
geometrically weighted configurations): unplausible for large 
networks or competitive contexts where information is 
strategically concealed (e.g., Renzini et al., 2023)


• tie selection as a multinomial choice based on preference 
optimization: unplausible for cognitive relations not requiring 
psychological investment (liking vs. disliking, status attribution)


• myopia: prevents modelling a) backward-looking rationality and 
learning processes; b) forward-looking rationality (strategic 
behaviour in competitive contexts)


• changing one tie at each simulation step: prevents modelling 
coordination(Leifeld & Cranmer, 2019) and cascade dynamics 
driven by threshold-based preferences (Renzini et al., 2023)

ABMs can complement 
for statistical models’ 
limits concerning: 

- actors’ behaviour 

- tie types 

- context



• Renzini, Bianchi, & Squazzoni (2023):


• Explaining advice-seeking network formation as the outcome of request 
overload (threshold-based)


• Limited information, local heuristics, plausible and parsimonious model


• Fitted to classic Lazega’s (2001) network


• Bianchi, Bellotti, & Renzini (wip):


• Explaining low adoption rates of malaria prevemptive practices in tribal villages 
in Meghalaya (India)


• Complex contagion via information ties (threshold-based) * negative influence 

Examples of ABMs 
of social networks



• Generativist method (Epstein, 2006): 
sequential complexification of the 
modelled mechanism along with 
computer simulations until the 
generated outcome fits the empirical 
observations (summary statistics)


• Testing for unobserved (unobservable?) 
mechanism components (e.g., 
thresholds, motives, etc.)


• Simulation-based point estimates of 
parameters and uncertainty measures 
for untractable likelihood functions 
(Hartig et al., 2011;  Carrella, 2021)


• No need to rely on unplausible 
assumptions to obtain a tractable 
likelihood function

Theoretical, yet empirical



• ABM of social networks to estimate unobserved or 
unobservable processes 

• Bringing back context-dependent behaviour and 
cognition (type of ties) to the core of explanations of 
social phenomena


• Experiment (Brashears & Gladstone, 2020)


• Middle-range social science

Conclusions
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